Avances en la caracterización experimental de canales UAV-A-infraestructura en bandas de 5G

Autores/as

DOI:

https://doi.org/10.26507/paper.3237

Palabras clave:

Wireless communication, Channel models, Unmanned aircraft systems, Propagation measurements

Resumen

El crecimiento de las aplicaciones de vehículos aéreos no tripulados (UAV) es innegable, ya que sus potencialidades han aumentado significativamente. Los sistemas UAV requieren comunicaciones confiables para controlar la navegación o transmitir datos confidenciales, lo que se vuelve crucial para el desarrollo de la tecnología UAV. Los sistemas de comunicaciones utilizan el canal inalámbrico para propagar un frente de onda entre el transmisor/receptor y el vehículo que puede obstruirse o desvanecerse. El desvanecimiento es causado por fenómenos de propagación, reflexiones, difracciones, dispersión y las características del escenario de propagación produciendo efectos multicamino y Doppler, dando lugar a sistemas de desvanecimiento selectivo tiempo-frecuencia y sistemas de desvanecimiento de dispersión en tiempo-frecuencia, que afectan a la señal transmitida por el canal. Comúnmente, la obstrucción se produce por la dispersión de objetos en el suelo, como edificios, la orografía del terreno y por la propia estructura del UAV.

Los modelos de propagación permiten el desarrollo y selección de los sistemas de comunicación óptimos para cada aplicación. Proponer modelos de propagación es fundamental para lograr una caracterización adecuada del canal de comunicación para comprender su comportamiento. Las caracterizaciones de canales se pueden realizar a través de análisis teóricos o con simulaciones electromagnéticas computarizadas. Sin embargo, las caracterizaciones más confiables usan medidas experimentales en el campo para validar modelos teóricos o simulados.

Este trabajo muestra el avance que han tenido los modelos de pérdidas de propagación desarrollados a través de la caracterización experimental de un canal de comunicación inalámbrico entre un UAV y una infraestructura terrestre. También se muestran los trabajos de implementación de sondas de canal en bandas bajas y medias de 5G.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

S. Hayat, E. Yanmaz, and R. Muzaffar, "Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint," IEEE Commun. Surv. TUTORIALS, vol. 18, no. 4, pp. 2624-2661, 2016. https://doi.org/10.1109/COMST.2016.2560343

R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen, "Radio Channel Modeling for UAV Communication over Cellular Networks," IEEE Wirel. Commun. Lett., vol. 6, no. 4, pp. 514-517, 2017. https://doi.org/10.1109/LWC.2017.2710045

A. Art Pregler, "When COWs Fly: AT&T sending LTE signals from drones," 2017. [Online]. Available: https://about.att.com/innovationblog/cows_fly. [Accessed: 13-Jun-2020].

W. Khawaja, I. Guvenc, D. W. Matolak, U. C. Fiebig, and N. Schneckenburger, "A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles," IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2361-2391, 2019. https://doi.org/10.1109/COMST.2019.2915069

L. Rubio, H. Fernandez, V. M. Rodrigo-Penarrocha, and J. Reig, "Path loss characterization for vehicular-to-infrastructure communications at 700 MHz and 5.9 GHz in urban environments," IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 2015-Octob, no. ii, pp. 93-94, 2015. https://doi.org/10.1109/APS.2015.7304432

H. Fernandez, L. Rubio, V. M. Rodrigo-Penarrocha, and J. Reig, "Path loss characterization for vehicular communications at 700 MHz and 5.9 GHz under LOS and NLOS conditions," IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 931-934, 2014. https://doi.org/10.1109/LAWP.2014.2322261

L. Rubio, V. M. Rodrigo-Penarrocha, J. Reig, and H. Fernandez, "Investigation of the path loss propagation for V2V communications in the opposite direction," 2016 IEEE Antennas Propag. Soc. Int. Symp. APSURSI 2016 - Proc., pp. 1685-1686, 2016. https://doi.org/10.1109/APS.2016.7696549

Y. Zeng, Q. Wu, and R. Zhang, "Accessing from the Sky: A Tutorial on UAV Communications for 5G and beyond," Proc. IEEE, vol. 107, no. 12, pp. 2327-2375, 2019. https://doi.org/10.1109/JPROC.2019.2952892

3rd Generation Partnership Project, "Technical specification group radio access network: Study on enhanced LTE Support for Aerial Vehicles." 3GPP TR 36.777 Release 15, 2017.

D. W. Matolak and R. Sun, "Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part I: Methods, Measurements, and Models for Over-Water Settings," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 26-44, 2017. https://doi.org/10.1109/TVT.2016.2530306

V. Vahidi and E. Saberinia, "OFDM for payload communications of UAS: Channel estimation and ICI mitigation," IET Commun., vol. 11, no. 15, pp. 2350-2356, 2017. https://doi.org/10.1049/iet-com.2017.0358

D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," BMJ, vol. 339, p. b2535, Jul. 2009. https://doi.org/10.1136/bmj.b2535

A. Al-Hourani and K. Gomez, "Modeling Cellular-to-UAV Path-Loss for Suburban Environments," IEEE Wirel. Commun. Lett., vol. 7, no. 1, pp. 82-85, Feb. 2018. https://doi.org/10.1109/LWC.2017.2755643

N. Goddemeier, K. Daniel, and C. Wietfeld, "Role-Based Connectivity Management with Realistic Air-to-Ground Channels for Cooperative UAVs," IEEE J. Sel. Areas Commun., vol. 30, no. 5, pp. 951-963, 2012. https://doi.org/10.1109/JSAC.2012.120610

D. W. Matolak and R. Sun, "Air-ground channel characterization for unmanned aircraft systems: The near-urban environment," in MILCOM 2015 - 2015 IEEE Military Communications Conference, 2015, pp. 1656-1660. https://doi.org/10.1109/MILCOM.2015.7357682

D. W. Matolak and R. Sun, "Air-Ground Channel Characterization for Unmanned Aircraft Systems: the Hilly Suburban Environment," IEEE Veh. Technol. Conf., vol. 66, no. 8, pp. 6607-6618, 2014. https://doi.org/10.1109/TVT.2017.2659651

D. Matolak and R. Sun, "Air-ground channel measurements and modeling for UAS," IEEE Aerosp. Electron. Syst. Mag., vol. 29, no. 11, pp. 30-35, 2014. https://doi.org/10.1109/MAES.2014.130104

R. Sun and D. W. Matolak, "Air-Ground Channel Characterization for Unmanned Aircraft Systems Part II: Hilly and Mountainous Settings," IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 1913-1925, 2016. https://doi.org/10.1109/TVT.2016.2585504

D. W. Matolak and R. Sun, "Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part III: The Suburban and Near-Urban Environments," IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 6607-6618, 2017. https://doi.org/10.1109/TVT.2017.2659651

D. W. Matolak and R. Sun, "Air-ground channels for UAS: Summary of measurements and models for L- and C-bands," ICNS 2016 Secur. an Integr. CNS Syst. to Meet Futur. Challenges, pp. 1-11, 2016. https://doi.org/10.1109/ICNSURV.2016.7486380

E. Yanmaz, R. Kuschnig, and C. Bettstetter, "Channel measurements over 802.11a-based UAV-to-ground links," 2011 IEEE GLOBECOM Work. GC Wkshps 2011, pp. 1280-1284, 2011. https://doi.org/10.1109/GLOCOMW.2011.6162389

E. Yanmaz, R. Kuschnig, and C. Bettstetter, "Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility," Proc. - IEEE INFOCOM, pp. 120-124, 2013. https://doi.org/10.1109/INFCOM.2013.6566747

N. Ahmed, S. S. Kanhere, and S. Jha, "On the importance of link characterization for aerial wireless sensor networks," IEEE Commun. Mag., vol. 54, no. 5, pp. 52-57, 2016. https://doi.org/10.1109/MCOM.2016.7470935

W. Khawaja, O. Ozdemir, and I. Guvenc, "UAV Air-to-Ground Channel Characterization for mmWave Systems," in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017, pp. 1-5. https://doi.org/10.1109/VTCFall.2017.8288376

W. Khawaja, I. Guvenc, and D. Matolak, "UWB Channel Sounding and Modeling for UAV Air-to-Ground Propagation Channels," in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1-7. https://doi.org/10.1109/GLOCOM.2016.7842372

M. Simunek, F. P. Fontán, and P. Pechac, "The UAV low elevation propagation channel in urban areas: Statistical analysis and time-series generator," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3850-3858, 2013. https://doi.org/10.1109/TAP.2013.2256098

V. Nikolaidis, N. Moraitis, and A. G. Kanatas, "Dual-Polarized Narrowband MIMO LMS Channel Measurements in Urban Environments," IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 763-774, 2017. https://doi.org/10.1109/TAP.2016.2637862

Y. Zeng, J. Lyu, and R. Zhang, "Cellular-connected UAV: Potential, challenges, and promising technologies," IEEE Wirel. Commun., vol. 26, no. 1, pp. 120-127, 2019. https://doi.org/10.1109/MWC.2018.1800023

Z. Xiao, P. Xia, and X. G. Xia, "Enabling UAV cellular with millimeter-wave communication: potentials and approaches," IEEE Commun. Mag., vol. 54, no. 5, pp. 66-73, 2016. https://doi.org/10.1109/MCOM.2016.7470937

Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Commun. Mag., vol. 54, no. 5, pp. 36-42, 2016. https://doi.org/10.1109/MCOM.2016.7470933

M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, "A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems," IEEE Commun. Surv. TUTORIALS, vol. 21, no. 3, pp. 2334-2360, 2019. https://doi.org/10.1109/COMST.2019.2902862

A. Fotouhi et al., "Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges," IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3417-3442, 2019. https://doi.org/10.1109/COMST.2019.2906228

D. W. Matolak and R. Sun, "Unmanned aircraft systems: Air-ground channel characterization for future applications," IEEE Veh. Technol. Mag., vol. 10, no. 2, pp. 79-85, 2015. https://doi.org/10.1109/MVT.2015.2411191

A. A. Khuwaja, Y. Chen, N. Zhao, M. S. Alouini, and P. Dobbins, "A survey of channel modeling for uav communications," IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2804-2821, 2018. https://doi.org/10.1109/COMST.2018.2856587

M. M. Azari, F. Rosas, K. C. Chen, and S. Pollin, "Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity," IEEE Trans. Commun., vol. 66, no. 1, pp. 330-344, 2018. https://doi.org/10.1109/TCOMM.2017.2746105

P. S. Bithas, V. Nikolaidis, A. G. Kanatas, and G. K. Karagiannidis, "UAV-to-Ground Communications: Channel Modeling and UAV Selection," IEEE Trans. Commun., vol. 68, no. 8, pp. 5135-5144, 2020. https://doi.org/10.1109/TCOMM.2020.2992040

A. Al-Hourani, S. Kandeepan, and S. Lardner, "Optimal LAP altitude for maximum coverage," IEEE Wirel. Commun. Lett., vol. 3, no. 6, pp. 569-572, 2014. https://doi.org/10.1109/LWC.2014.2342736

T. Wu, T. S. Rappaport, M. E. Knox, and D. Shahrjerdi, "A wideband sliding correlator-based channel sounder with synchronization in 65 nm CMOS," Proc. - IEEE Int. Symp. Circuits Syst., vol. 2019-May, no. May, 2019. https://doi.org/10.1109/ISCAS.2019.8702223

Descargas

Publicado

11-09-2023

Cómo citar

[1]
J. C. Muñoz Pérez, H. A. Fernández González, L. Rubio, y V. M. Rodrigo Peñarrocha, «Avances en la caracterización experimental de canales UAV-A-infraestructura en bandas de 5G», EIEI ACOFI, sep. 2023.
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code
Crossref Cited-by logo