Espectroscopía de impedancia eléctrica y dieléctrica aplicada en el control de calidad de aceites minerales. Revisión del estado del arte

Autores/as

DOI:

https://doi.org/10.26507/paper.2932

Palabras clave:

aceite mineral, impedancia, eléctrica, dieléctrica, control de calidad

Resumen

La espectroscopía de impedancia es una técnica que junto a la espectroscopía dieléctrica, facilitan una caracterización rápida y no destructiva de materiales biológicos, minerales y bioquímicos. El aceite mineral orgánico e inorgánico se obtiene como un subproducto del procesamiento del petróleo crudo y es un ingrediente común en muchos productos cosméticos y normalmente usado como lubricante y aceite aislante.  En el presente trabajo se realiza una exhaustiva revisión de la literatura sobre el uso de la  espectroscopía de impedancia eléctrica y dieléctrica aplicada en el control de calidad de aceites minerales dado  que es una técnica rápida y económica, además, es posible el uso de sensores de impedancia en los sitios de producción de aceite, donde, sería deseable conocer las principales características para una correcta clasificación del producto. Debido a lo anterior, la presente revisión tuvo como objetivo recopilar información científica publicada entre 1992 y 2022, que describe el uso de las técnicas de espectroscopia de impedancia eléctrica y dieléctrica en el control de calidad de los aceites minerales. En la revision se encontró el 40% de artículos con un enfoque respecto a la determinación de nuevas aplicaciones, un 41% respecto a la determinación de componentes y un 20% de la estabilidad del aceite, teniendo en cuenta que las propiedades eléctricas y la estabilidad térmica de los materiales aislantes están estrechamente relacionadas y las propiedades eléctricas se deterioran a medida que disminuye la estabilidad térmica del material, en diversos estudios se demostró que a medida que el aceite  mineral se degrada, la conductividad aumenta debido al aumento en la concentración de especies conductoras tales como ácido nítrico (productos derivados de la oxidación) y contaminantes (por ejemplo, desgaste metálico partículas, agua). Los resultados sugieren que la medición en línea de la acidez del aceite es un importante factor de control de la calidad que podría realizarse en los motores de combustión, como complemento de los métodos convencionales de control del estado del aceite (por ejemplo, control del nivel y la presión del aceite). En resumen, propiedades eléctricas tales como permitividad, impedancia y conductividad proporcionan un medio prometedor para evaluar la calidad de estos aceites.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdi, S., Harid, N., Safiddine, L., Boubakeur, A., & Haddad, A. (2021). The correlation of transformer oil electrical properties with water content using a regression approach. Energies, 14(8). https://doi.org/10.3390/en14082089

Abdi, S., Safiddine, L., Boubakeur, A., & Haddad, A. (2020). The effect of water content on the electrical properties of transformer oil. In Lecture Notes in Electrical Engineering: Vol. 599 LNEE. https://doi.org/10.1007/978-3-030-31680-8_52

Aditama, S. (2005). Dielectric properties of Palm Oils as liquid insulating materials: Effects of fat content. Proceedings of the International Symposium on Electrical Insulating Materials, 1, 91–94. https://doi.org/10.1109/iseim.2005.193334

Alba, P. G. (2015). Aceites vegetales, hacia una producción sostenible. El Hombre y La Máquina, 46, 9–19.

Alberto, B. (1997). Oxidación de lípidos y antioxidantes. Universidad Nacional de Colombia., 59.

Alejandra, L., García, C., Alejandra, L., & García, C. (2022). Propuesta De Formulaciones Cosméticas A Base De Aceite De Aguacate Hass Colombiano , Una Revisión Bibliográfica Propuesta De Formulaciones Cosméticas A Base De Aceite De Aguacate Hass Colombiano , Una Revisión Bibliográfica.

Amsyar Azman, A., Abdul Rahim, R., Ibrahim, S., Azmi, A., Arsad, A., & Md Yunus, M. A. (2016). Electrochemical impedance spectroscopy for palm cooking oil discriminator using planar electromagnetic sensor array. Jurnal Teknologi, 78(7–4), 51–57. https://doi.org/10.11113/jt.v78.9420

Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121(1), 24–31. https://doi.org/10.1016/j.jfoodeng.2013.08.008

Aristizábal-Botero, W. (2010). Electromagnetismo con aplicaciones a la biología y a la ingeniería. Universidad de Caldas.

Bagheryan, Z., Raoof, J.-B., Golabi, M., Turner, A. P. F., & Beni, V. (2016). Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. BIOSENSORS & BIOELECTRONICS, 80, 566–573. https://doi.org/10.1016/j.bios.2016.02.024

Bansal, A. K., Singh, P. J., Sharma, K. S., Kumar, S., & Kumar, P. R. (2001). Dielectric properties of different varieties of rapeseed-mustard oil at different temperatures. Indian Journal of Pure and Applied Physics, 39(8), 532–540.

Barbosa, D. A. B., Paschoal, C. W. A., Louzeiro, H. C., Mendonça, K. K. M., Maciel, A. P., Silva, F. C., & de Oliveira, H. P. (2011). Impedance spectroscopy investigation of the water-in-oil microemulsions formation. Colloids and Surfaces B: Biointerfaces, 84(2), 325–328. https://doi.org/10.1016/j.colsurfb.2011.01.022

Barni, S., Addabbo, T., Fort, A., Becatti, M., Fiorillo, C., Mugnaini, M., Taddei, N., Vignoli, V., Novembre, E., & Mori, F. (2018). Food Allergen-IgE Impedance Measurements Evaluation in Allergic Children. In Lecture Notes in Electrical Engineering (Vol. 457). https://doi.org/10.1007/978-3-319-66802-4_13

Beer et al. (2014). In line monitoring of the preparation of water-in-oil-in-water (W/O/W) type multiple emulsions via dielectric spectroscopy. Int. J. Pharm, 643–647.

Bidutte Cortez, A. P., de Morais, M. B., Leite Speridiao, P. da G., da Motta Mattar, R. H., Calanca, F., & Fagundes Neto, U. (2010). Food Intake, Growth and Body Composition of Children and Adolescents With Autoimmune Hepatitis. JOURNAL OF CLINICAL GASTROENTEROLOGY, 44(3), 200–207. https://doi.org/10.1097/MCG.0b013e3181b9145a

Bilyy, O. I., Yaremyk, R. Y., Kotsyumbas, I. Y., & Kotsyumbas, H. I. (2012). Impedance spectroscopy of food mycotoxins. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 8212. https://doi.org/10.1117/12.908944

Bircan, C., & Barringer, S. A. (2002). Determination of protein denaturation of muscle foods using the dielectric properties. Journal of Food Science, 67(1), 202–205. https://doi.org/10.1111/j.1365-2621.2002.tb11384.x

Byington, C., Mackos, N., Argenna, G., Palladino, A., Reimann, J., & Schmitigal, J. (2012). Application of symbolic regression to electrochemical impedance spectroscopy data for lubricating oil health evaluation. Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012, PHM 2012, 111–121.

Caicedo-Eraso, J. C., Díaz-Arango, F. O., & Osorio-Alturo, A. (2020). Electrical impedance spectroscopy applied to quality control in the food industry | Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria. Ciencia Tecnologia Agropecuaria, 21(1). https://doi.org/10.21930/RCTA.VOL21_NUM1_ART:951

CALAY, R. K., NEWBOROUGH, M., PROBERT, D., & CALAY, P. S. (1994). Predictive equations for the dielectric properties of foods. International Journal of Food Science & Technology, 29(6), 699–713. https://doi.org/10.1111/j.1365-2621.1994.tb02111.x

Cesiulis, H., Zilinskas, A., Padgurskas, J., Kreivaitis, R., & Rukuiza, R. (2018). Chemical, electrochemical and tribological study of various olive oils and their behaviour on steel. CHEMIJA, 29(1), 17–27.

Chai, C., Lee, J., & Takhistov, P. (2010). Direct Detection of the Biological Toxin in Acidic Environment by Electrochemical Impedimetric Immunosensor. SENSORS, 10(12), 11414–11427. https://doi.org/10.3390/s101211414

Chakraborty, M., & Biswas, K. (2018). Limit of Detection for Five Common Adulterants in Milk: A Study With Different Fat Percent. IEEE SENSORS JOURNAL, 18(6), 2395–2403. https://doi.org/10.1109/JSEN.2018.2794764

Chen, C., Zhang, J., Ma, C., Liang, H., Qing, M., Xie, Y., Huang, Q., Han, S., & Li, H. (2019). Influence of Wax Precipitation on the Impedance Spectroscopy of Waxy Oils. Energy and Fuels, 33(10), 9767–9778. https://doi.org/10.1021/acs.energyfuels.9b02543

Chiriacò, M. S., Parlangeli, I., Sirsi, F., Poltronieri, P., Primiceri, E., Chiriaco, M. S., Parlangeli, I., Sirsi, F., Poltronieri, P., & Primiceri, E. (2018). Impedance Sensing Platform for Detection of the Food Pathogen Listeria monocytogenes. ELECTRONICS, 7(12). https://doi.org/10.3390/electronics7120347

Corach, J., Sorichetti, P. A., & Romano, S. D. (2012). Electrical properties of mixtures of fatty acid methyl esters from different vegetable oils. International Journal of Hydrogen Energy, 37(19), 14735–14739. https://doi.org/10.1016/j.ijhydene.2011.12.089

Corach, J., Sorichetti, P. A., & Romano, S. D. (2014). Electrical properties of vegetable oils between 20 Hz and 2 MHz. International Journal of Hydrogen Energy, 39(16), 8754–8758. https://doi.org/10.1016/j.ijhydene.2013.12.036

Cruze, A. P., & Lokesh, K. S. (2019). Thermal and dielectric properties of processed mahuva oil. Proceedings - IEEE International Conference on Dielectric Liquids, 2019-June. https://doi.org/10.1109/ICDL.2019.8796793

Damez, J.-L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2008). Electrical impedance probing of the muscle food anisotropy for meat ageing control. Food Control, 19(10), 931–939. https://doi.org/10.1016/j.foodcont.2007.09.005

De Zanet, D., Battiston, M., Lombardi, E., Da Ponte, A., Specogna, R., Trevisan, F., Affanni, A., & Mazzucato, M. (2017). Blood components characterization for pre-analytical rapid quality controls through impedance measurements. 22nd IMEKO TC4 International Symposium and 20th International Workshop on ADC Modelling and Testing 2017: Supporting World Development Through Electrical and Electronic Measurements, 2017-Septe, 331–335.

Delfino et al. (2018). A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy. Talanta, 753–759.

Delgado, E., Aperador, W., & Hernández, A. (2015). Impedance spectroscopy as a tool for the diagnosis of the state of vegetable oils used as lubricants. International Journal of Electrochemical Science, 10(10), 8190–8199.

Dumitran, L. M., Ciuriuc, A., & Notingher, P. V. (2013). Thermal ageing effects on the dielectric properties and moisture content of vegetable and mineral oil used in power transformers. 2013 - 8th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2013. https://doi.org/10.1109/ATEE.2013.6563459

El-Shami, S. M., Selim, I. Z., El-Anwar, I. M., & El-Mallah, M. H. (1992). Dielectric properties for monitoring the quality of heated oils. Journal of the American Oil Chemists Society, 69(9), 872–875. https://doi.org/10.1007/BF02636335

El Khaled, D., Castellano, N. N., Gazquez, J. A., García Salvador, R. M., & Manzano-Agugliaro, F. (2017). Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 140, 1749–1762. https://doi.org/10.1016/j.jclepro.2015.10.096

F. M. Al-Nowaiser, M. A. & E. H. E.-M. (2011). ROSEMARY OIL AS A CORROSION INHIBITOR FOR CARBON STEEL IN 0.5 M SULFURIC ACID SOLUTION. Chemistry and Technology of Fuels and Oils Article Number: 66, volume 47.

Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113(2), 210–216. https://doi.org/10.1016/j.jfoodeng.2012.06.003

Fernandez Vazquez, R., Martinez Blanco, J., Garcia Vega, M. del M., Angel Barbancho, M., & Alvero Cruz, J. R. (2015). Effects of food and drink ingestion on body composition variables of abdominal bioelectrical impedance. NUTRICION HOSPITALARIA, 32(5), 2269–2273. https://doi.org/10.3305/nh.2015.32.5.9618

Firouz, M. S., Omid, M., Babaei, M., & Rashvand, M. (2022). Dielectric spectroscopy coupled with artificial neural network for classification and quantification of sesame oil adulteration. Information Processing in Agriculture, 9(2), 233–242.

Flint, S., Naila, A., & Bashir, R. (2015). Impedance microbiology and microbial screening strategy for detecting pathogens in food. In High Throughput Screening for Food Safety Assessment: Biosensor Technologies, Hyperspectral Imaging and Practical Applications. https://doi.org/10.1016/B978-0-85709-801-6.00012-5

Ghosh Dastider, S., Barizuddin, S., Dweik, M., & Almasri, M. F. (2012). Impedance biosensor based on interdigitated electrode array for detection of E.coli O157:H7 in food products. Proceedings of SPIE - The International Society for Optical Engineering, 8369. https://doi.org/10.1117/12.920821

Grand view research. (2019). Informe de análisis de tamaño, participación y tendencias del mercado de aceite mineral por grado (aceite técnico, aceite blanco), por región (América del Norte, Europa, APAC, LATAM, MEA), panorama competitivo y pronósticos de segmento, 2019 - 2025. https://www.grandviewresearch.com/industry-analysis/mineral-oil-market

Grossi, M., Lanzoni, M., Lazzarini, R., & Ricco, B. (2012). Automatic ice-cream characterization by impedance measurements for optimal machine setting. MEASUREMENT, 45(7), 1747–1754. https://doi.org/10.1016/j.measurement.2012.04.009

Grossi, M., Lanzoni, M., Pompei, A., Lazzarini, R., Matteuzzi, D., & Ricco, B. (2010). An embedded portable biosensor system for bacterial concentration detection. BIOSENSORS & BIOELECTRONICS, 26(3), 983–990. https://doi.org/10.1016/j.bios.2010.08.039

Grossi, M., Lecce, G. D., Toschi, T. G., & Riccò, B. (2014a). A novel electrochemical method for olive oil acidity determination. MICROELECTRONICS JOURNAL, 45(12), 1701–1707. https://doi.org/10.1016/j.mejo.2014.07.006

Grossi, M., Lecce, G. D., Toschi, T. G., & Riccò, B. (2014b). Fast and accurate determination of olive oil acidity by electrochemical impedance spectroscopy. IEEE Sensors Journal, 14(9), 2947–2954. https://doi.org/10.1109/JSEN.2014.2321323

Grossi, M., Palagano, R., Bendini, A., Ricco, B., Servili, M., Luis Garcia-Gonzalez, D., & Toschi, T. G. (2019). Design and in-house validation of a portable system for the determination of free acidity in virgin olive oil. FOOD CONTROL, 104, 208–216. https://doi.org/10.1016/j.foodcont.2019.04.019

Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. Journal of Sensors and Sensor Systems, 6(2), 303–325. https://doi.org/10.5194/jsss-6-303-2017

Guermazi, M., Fendri, A., Kanoun, O., & Derbel, N. (2018). Potential of impedance spectroscopy for real-time assessing of food quality. IEEE Instrumentation and Measurement Magazine, 21(6), 44–48. https://doi.org/10.1109/MIM.2018.8573593

HadiAlnashia, I. A., Ibrahim Mohd, I., Almelian, M. M., & Omran, M. A. (2018). The impact of partial discharge on the dielectric properties of refined bleached and deodorized palm oil (RBDPO). Journal of Telecommunication, Electronic and Computer Engineering, 10(1–3), 81–85.

Halalay, I. C., & Schneider, E. W. (2007). In-situ monitoring of engine oils through electrical AC impedance measurements. SAE Technical Papers. https://doi.org/10.4271/2007-01-4092

Hamid, M. H. A., Ishak, M. T., Suhaimi, N. S., Adnan, J., Hashim, N. I., Ariffin, M., Katim, N. I. A., & Abd Rahman, R. (2022). Electrical properties of palm oil and rice bran oil under AC stress for transformer application. Alexandria Engineering Journal, 61(11), 9095–9105. https://doi.org/10.1016/j.aej.2022.02.049

Hollaender, J. (1997). Rapid assessment of food/package interactions by electrochemical impedance spectroscopy (EIS). Food Additives and Contaminants, 14(6–7), 617–626. https://doi.org/10.1080/02652039709374574

Imarc. (2021). Mercado de aceite vegetal (aceite de palma, aceite de canola, aceite de coco y aceite de soja): tendencias globales de la industria, participación, tamaño, crecimiento, oportunidad y pronóstico 2022-2027. https://www.imarcgroup.com/vegetable-oil-processing-plant

Jariyanurat, K., Nimsanong, P., Chaisiri, P., Maneerot, S., Kitcharoen, P., & Pattanadech, N. (2017). Dielectric properties of mineral oil compared with natural ester. 2017 IEEE 19th International Conference on Dielectric Liquids, ICDL 2017, 2017-Janua, 1–4. https://doi.org/10.1109/ICDL.2017.8124716

Jawad, G. M., Marrow, T., & Odumeru, J. A. (1998). Assessment of impedance microbiological method for the detection of escherichia coli in foods. Journal of Rapid Methods and Automation in Microbiology, 6(4), 297–305. https://doi.org/10.1111/j.1745-4581.1998.tb00210.x

Jha, S. N., Narsaiah, K., Basediya, A. L., Sharma, R., Jaiswal, P., Kumar, R., & Bhardwaj, R. (2011). Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods-a review. Journal of Food Science and Technology, 48(4), 387–411. https://doi.org/10.1007/s13197-011-0263-x

Johnson, N., Chang, Z., Bravo Almeida, C., Michel, M., Iversen, C., & Callanan, M. (2014). Evaluation of indirect impedance for measuring microbial growth in complex food matrices. Food Microbiology, 42, 8–13. https://doi.org/10.1016/j.fm.2014.02.014

Khaled, A. Y., Abd Aziz, S., Rokhani, F. Z., & Ibrahim, N. U. A. (2018). INTERDIGITATED ELECTRODE FOR DEGRADATION ASSESSMENT OF PALM OLEIN DURING BATCH DEEP FAT FRYING. TRANSACTIONS OF THE ASABE, 61(1), 15–24. https://doi.org/10.13031/trans.11840

Knothe, G., Krahl, J., & Van Gerpen, J. (2015). The biodiesel handbook. In Elsevier.

Koseoglu, S. Z. A., & Dogrusoy, M. (2020). Evaluation of hase angle measurements and nutrient consumption by bioelectrical impedance method of 20-65 years old women. PROGRESS IN NUTRITION, 22(3). https://doi.org/10.23751/pn.v22i3.8523

Krejci, I., Smetana, P., & Musil, M. (2015). Impedance spectrometer for application in biology and food quality control. XXI IMEKO World Congress “Measurement in Research and Industry.”

Kremer, F., & Schönhals, A. (2013). Broadband Dielectric Spectroscopy. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).

Kumar, D., Singh, A., & Tarsikka, P. S. (2013). Interrelationship between viscosity and electrical properties for edible oils. Journal of Food Science and Technology, 50(3), 549–554. https://doi.org/10.1007/s13197-011-0346-8

Lewi, A., & Peew, D. (2011). ON THE EVALUATION OF EXPLOITATION QUALITIES OF PRISTA SUPER 25W40 MOTOR OIL WITH DIA METHOD. EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 4, 11–14.

Li, J., Sun, Y.-F., Zou, P., Yang, L.-J., & Chen, X.-L. (2009). Dielectric properties of refined insulating rapeseed-oil. Gaodianya Jishu/High Voltage Engineering, 35(6), 1316–1321.

Liao, Q., Xu, T., Li, X. W., & Fan, W. D. (2013). A development of detection system on acid value of lubricating oil based on impedance method. In Applied Mechanics and Materials (Vols. 401–403). https://doi.org/10.4028/www.scientific.net/AMM.401-403.1177

Liu, H., Tang, X., Lu, H., Xie, W., Hu, Y., & Xue, Q. (2020). An interdigitated impedance microsensor for detection of moisture content in engine oil. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 3(2), 75–80. https://doi.org/10.1016/j.npe.2020.04.001

Lizhi, H., Toyoda, K., & Ihara, I. (2008). Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering, 88(2), 151–158. https://doi.org/10.1016/j.jfoodeng.2007.12.035

Lizhi, H., Toyoda, K., & Ihara, I. (2010). Discrimination of olive oil adul-terated with vegetable oils using dielectric spectroscopy. J. Food Eng, 96, 167–171.

M’Peko, J.-C., Reis, D. L. S., De Souza, J. E., & Caires, A. R. L. (2013). Evaluation of the dielectric properties of biodiesel fuels produced from different vegetable oil feedstocks through electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 38(22), 9355–9359. https://doi.org/10.1016/j.ijhydene.2013.05.086

Ma, R., Qin, W., Wu, W., Zhou, X., Zhang, D., & Xin, S. (2007). Review of research advances in non-destructive quality evaluation technology of food by dielectric property. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 23(5), 278–283.

Macioszek, Ł., Włodarczak, S., & Rybski, R. (2019). Mineral oil moisture measurement with the use of impedance spectroscopy. IET Science, Measurement and Technology, 13(8), 1158–1162. https://doi.org/10.1049/iet-smt.2018.5620

Malvano, F., Pilloton, R., & Albanese, D. (2020). Label-free impedimetric biosensors for the control of food safety - a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 100(4, SI), 468–491. https://doi.org/10.1080/03067319.2019.1667096

Mansfeld, F., & Kendig, M. W. (1985). IMPEDANCE SPECTROSCOPY AS QUALITY CONTROL AND CORROSION TEST FOR ANODIZED Al ALLOYS. Corrosion, 41(8), 490–492. https://doi.org/10.5006/1.3583832

Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., Baigts, D., Martínez-Máñez, R., & Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators, A: Physical, 158(2), 217–223. https://doi.org/10.1016/j.sna.2010.01.010

Mohamad, N. A., Azis, N., Jasni, J., Ab Kadir, M. Z. A., Yunus, R., Ishak, M. T., & Yaakub, Z. (2014). A study on the dielectric properties of Palm Oil and Coconut Oil. Conference Proceeding - 2014 IEEE International Conference on Power and Energy, PECon 2014, 109–112. https://doi.org/10.1109/PECON.2014.7062423

Nagashree, A. N., Champa, V., Sumangala, B. V., & Nagabhushana, G. R. (2018). High Frequency Dielectric Properties of Insulation Systems with New Natural Vegetable Seed Oils. Materials Today: Proceedings, 5(1), 2685–2695. https://doi.org/10.1016/j.matpr.2018.01.049

Nakonieczna, A., Paszkowski, B., Wilczek, A., Szypłowska, A., & Skierucha, W. (2016). Electrical impedance measurements for detecting artificial chemical additives in liquid food products. Food Control, 66, 116–129. https://doi.org/10.1016/j.foodcont.2016.01.044

Navia, J. A. (2019). ESPECTROSCOPÍA DE IMPEDANCIA EN SOLUCIONES ASFALTENO-TOLUENO Y MALTENO-TOLUENO DE.

Nelson, S. O., & Trabelsi, S. (2012). Factors influencing the dielectric properties of agricultural and food products. Journal of Microwave Power and Electromagnetic Energy, 46(2), 93–107. https://doi.org/10.1080/08327823.2012.11689828

Nihtianov, S. N., Shterev, G. P., Petrov, N., & Meijer, G. C. M. (2000). Interface circuit for impedance measurement to test sterility of food products. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2, 687–691.

Nyhan, L., Johnson, N., Begley, M., O’Leary, P., & Callanan, M. (2020). Comparison of predicted and impedance determined growth of Listeria innocua in complex food matrices. Food Microbiology, 87. https://doi.org/10.1016/j.fm.2019.103381

Paiter, L., Galvão, J. R., & Stevan, S. L. (2015). Empirical Correlation Between Saturation and Dielectric Properties for Vegetal Oils Rating. IEEE Latin America Transactions, 13(7), 2114–2120. https://doi.org/10.1109/TLA.2015.7273766

Paolinelli, L. D., Yao, J., & Rashedi, A. (2017). Phase wetting detection and water layer thickness characterization in two-phase oil-water flow using high frequency impedance measurements. Journal of Petroleum Science and Engineering, 157, 671–679. https://doi.org/10.1016/j.petrol.2017.07.065

Perez, A. T., & Hadfield, M. (2011). Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity. SENSORS, 11(11), 10675–10690. https://doi.org/10.3390/s111110675

Perini, N., Prado, A. R., Sad, C. M. S., Castro, E. V. R., & Freitas, M. B. J. G. (2012). Electrochemical impedance spectroscopy for in situ petroleum analysis and water-in-oil emulsion characterization. Fuel, 91(1), 224–228. https://doi.org/10.1016/j.fuel.2011.06.057

Pliquett, U. (2010). Bioimpedance: A review for food processing. Food Engineering Reviews, 2(2), 74–94. https://doi.org/10.1007/s12393-010-9019-z

Pratomosiwi, F., Pattanadech, N., Wieser, B., Pukel, G., Stössl, M., & Muhr, M. (2012). Study of electrode for measuring dielectric properties of oil immersed material. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 211–214. https://doi.org/10.1109/CEIDP.2012.6378758

Preuss, J.-A., Reich, P., Bahner, N., & Bahnemann, J. (2020). Impedimetric Aptamer-Based Biosensors: Applications. In K. Urmann & J. G. Walter (Eds.), APTAMERS IN BIOTECHNOLOGY (Vol. 174, pp. 43–91). https://doi.org/10.1007/10_2020_125

Prevc, T., Šegatin, N., Kralj, P., Poklar Ulrih, N., & Cigić, B. (2015). Influence of metal ions and phospholipids on electrical properties: A case study on pumpkin seed oil. Food Control, 54, 287–293. https://doi.org/10.1016/j.foodcont.2015.01.040

Qing, M., Liang, H., Zhang, J., & Zhan, H. (2020). The mechanism of detecting water content in oil-water emulsions using impedance spectroscopy. Journal of Petroleum Science and Engineering, 188. https://doi.org/10.1016/j.petrol.2019.106863

Radhakrishnan, R., Jahne, M., Rogers, S., & Suni, I. I. (2013). Detection of Listeria Monocytogenes by Electrochemical Impedance Spectroscopy. ELECTROANALYSIS, 25(9), 2231–2237. https://doi.org/10.1002/elan.201300140

Ragni, L et al. (2013). Capacitive technique to assess water contentin extra virgin olive oils. J. Food Eng, 116, 246–252.

Raveendran, A., Gopikrishna, M., & Raman, S. (2020). Metamaterial inspired RF planar sensor for dielectric characterization and identification of adulteration in vegetable oils. In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1–4.

Rivola, M., Ibba, P., Lugli, P., & Petti, L. (2021). Bioimpedance data statistical modelling for food quality classification and prediction. Proceedings - IEEE International Symposium on Circuits and Systems, 2021-May. https://doi.org/10.1109/ISCAS51556.2021.09401712

Rocha, J. W. S., Vicente, M. A., Melo, B. N., Marques, M. D. L. S. P., Guimarães, R. C. L., Sad, C. M. S., Castro, E. V. R., & Santos, M. F. P. (2019). Investigation of electrical properties with medium and heavy Brazilian crude oils by electrochemical impedance spectroscopy. Fuel, 241, 42–52. https://doi.org/10.1016/j.fuel.2018.12.017

Saied, M. A., Mansour, S. H., Ward, A. A., Rahim, I. S., Zayed, H. A., Saad, A. L. G., & Nour, K. N. A. (2014). Characterization of maleated vegetable oils for insulation purposes and agricultural applications. POLIMERY, 59(10), 729–738. https://doi.org/10.14314/polimery.2014.729

Sairin, M. A., Amira, N., Aziz, S. A., Sucipto, S., & Rokhani, F. Z. (2019). Design of portable wireless impedance spectroscopy for sensing lard as adulterant in palm oil. IOP Conference Series: Earth and Environmental Science, 230(1). https://doi.org/10.1088/1755-1315/230/1/012021

Segatin, N., Zontar, T. P., Ulrih, N. P. N. P., Šegatin, N., Žontar, T. P., & Ulrih, N. P. N. P. (2020). Dielectric Properties and Dipole Moment of Edible Oils Subjected to `Frying’ Thermal Treatment. FOODS, 9(7). https://doi.org/10.3390/foods9070900

Selim, I. Z. (1997). Correlation between dielectric properties and chemical changes in soybean oil derivatives. Polymer - Plastics Technology and Engineering, 36(1), 145–152. https://doi.org/10.1080/03602559.1997.10399444

Seo, Y. K., Lee, H., Kim, H., Kim, T. Y., Ryu, H., Ju, D. L., Jang, M., Oh, K.-H., Ahn, C., & Han, S. N. (2020). Foods contributing to nutrients intake and assessment of nutritional status in pre-dialysis patients: a cross-sectional study. BMC NEPHROLOGY, 21(1). https://doi.org/10.1186/s12882-020-01958-8

Shi, H., Huo, D., Zhang, H., Li, W., Sun, Y., Li, G., & Chen, H. (2021). An impedance sensor for distinguishing multi-contaminants in hydraulic oil of offshore machinery. Micromachines, 12(11). https://doi.org/10.3390/mi12111407

Sitorus, H. B. H., Setiabudy, R., Bismo, S., & Beroual, A. (2016). Jatropha Curcas Methyl Ester Oil Obtaining as Vegetable Insulating Oil. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 23(4), 2021–2028. https://doi.org/10.1109/TDEI.2016.7556474

Slyva, Y., & Pokhodylo, E. (2020). APPLICATION OF THE IMPEDANCE METHOD FOR DETERMINATION OF MONOSODIUM GLUTAMATE IN FOOD PRODUCTS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-UKRAINE, 14(2), 58–68. https://doi.org/10.15673/fst.v14i2.1720

Soleimani, M., Sophocleous, M., Wang, L., Atkinson, J., Hosier, I. L., Vaughan, A. S., Taylor, R. I., & Wood, R. J. K. (2014). Base oil oxidation detection using novel chemical sensors and impedance spectroscopy measurements. Sensors and Actuators, B: Chemical, 199, 247–258. https://doi.org/10.1016/j.snb.2014.03.076

Soleimani, M., Vaughan, A. S., Wang, L., Atkinson, J., Hosier, I. L., Taylor, R. I., & Wood, R. J. K. (2013). Oil condition monitoring using novel chemical sensors and impedance measurements. 10th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 2013, CM 2013 and MFPT 2013, 1, 53–59.

Soucek, J., Hornak, J., Svoboda, M., Gutten, M., & Koltunowicz, T. (2015). Comparison of the electrical properties of canola oil with commercially available mineral oil. Proceedings of the 2015 16th International Scientific Conference on Electric Power Engineering, EPE 2015, 634–637. https://doi.org/10.1109/EPE.2015.7161087

Spohner, M. (2016). Study of the dielectric properties of vegetable oils and their constituents. Proceedings of International Conference DEMISEE 2016: Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering, 16–19. https://doi.org/10.1109/DEMISEE.2016.7530478

Sucipto, Djatna, T., Irzaman, Tun Tedja, I., & Fauzi, A. M. (2013). Application of electrical properties to differentiate lard from tallow and palm oil. Media Peternakan, 36(1), 32–39. https://doi.org/10.5398/medpet.2013.36.1.32

Suwarno, Ilyas, M., & Rubadi. (2008). Effects of temperature on dielectric properties of rhicinnus oils as insulating liquid. Proceedings of 2008 International Conference on Condition Monitoring and Diagnosis, CMD 2008, 286–289. https://doi.org/10.1109/CMD.2008.4580283

To, E. C., Mudgett, R. E., Wang, D. I. C., Goldblith, S. A., & Decareau, R. V. (1974). DIELECTRIC PROPERTIES OF FOOD MATERIALS. Journal of Microwave Power, 9(4), 303–315. https://doi.org/10.1080/00222739.1974.11688928

Tokutake, K., Nishi, H., Ito, D., Okazaki, S., & Serizawa, Y. (2016). Evaluation of electrical properties of organic coating on internal bottom plate of oil storage tank interpretation of impedance spectra using constant-phase element. Zairyo to Kankyo/ Corrosion Engineering, 65(1), 24–30. https://doi.org/10.3323/jcorr.65.24

Tremouli, A., Pandis, P. K., Karydogiannis, I., Stathopoulos, V. N., Argirusis, C., & Lyberatos, G. (2019). Operation and electro(chemical) characterization of a microbial fuel cell stack fed with fermentable household waste extract. GLOBAL NEST JOURNAL, 21(2), 253–257. https://doi.org/10.30955/gnj.002996

Ulrych, J., & Mentlik, V. (2016). Dielectric properties of sunflower, rapeseed and commonly used mineral oil. Proceedings - 2016 17th International Scientific Conference on Electric Power Engineering, EPE 2016. https://doi.org/10.1109/EPE.2016.7521753

Vadim F. Lvovich. (2015). Impedance Spectroscopy : Applications to Electrochemical and Dielectric Phenomena.

Valli, E., Bendini, A., Berardinelli, A., Ragni, L., Ricco, B., Grossi, M., & Toschi, T. G. (2016). Rapid and innovative instrumental approaches for quality and authenticity of olive oils. EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, 118(11), 1601–1619. https://doi.org/10.1002/ejlt.201600065

Varshney, M., & Li, Y. (2007). Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics, 22(11), 2408–2414. https://doi.org/10.1016/j.bios.2006.08.030

Velusamy, V., Arshak, K., Yang, C., Yu, L., Korostynska, O., Oliwa-Stasiak, K., & Adley, C. (2010). Label-free detection of Bacillus cereus DNA hybridization using electrochemical impedance spectroscopy for food quality monitoring application. 2010 IEEE Sensors Applications Symposium, SAS 2010 - Proceedings, 135–138. https://doi.org/10.1109/SAS.2010.5439420

Vieira, D. S., Menezes, M., Gonçalves, G., Mukai, H., Lenzi, E. K., Pereira, N. C., & Fernandes, P. R. G. (2015). Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca) oils extracted by Soxhlet and mechanical pressing. Grasas y Aceites, 66(3). https://doi.org/10.3989/gya.0954142

Vigdorovich I, V., Tsygankova, L. E. E., Shel V, N., Golovchenko, A. O. O., Ostrikov, V. V. V, Vigdorowitsch, M. V. V, Vigdorovich, V. I., Tsygankova, L. E. E., Shel, N. V., Golovchenko, A. O. O., Ostrikov, V. V. V, & Vigdorowitsch, M. V. V. (2019). Using data of weight tests and impedance spectroscopy to evaluate the protective effectiveness of zinc-rich oil coatings in corrosion of carbon steel. INTERNATIONAL JOURNAL OF CORROSION AND SCALE INHIBITION, 8(2), 212–224. https://doi.org/10.17675/2305-6894-2019-8-2-4

Vihacencu, M. Ş., Ciuriuc, A., & Dumitran, L. M. (2013). Experimental study of electrical properties of mineral and vegetable transformer oils. UPB Scientific Bulletin, Series C: Electrical Engineering, 75(3), 171–182.

Vlachou, M. C., Zacharias, K. A., Kostoglou, M., & Karapantsios, T. D. (2020). Droplet size distributions derived from evolution of oil fraction during phase separation of oil-in-water emulsions tracked by electrical impedance spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586. https://doi.org/10.1016/j.colsurfa.2019.124292

Vrba, J., & Vrba, D. (2013). Temperature and frequency dependent empirical models of dielectric properties of sunflower and olive oil. Radioengineering, 22(4), 1281–1287.

Wang, L., Xue, L., Guo, R., Zheng, L., Wang, S., Yao, L., Huo, X., Liu, N., Liao, M., Li, Y., & Lin, J. (2020). Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains. POULTRY SCIENCE, 99(3), 1606–1614. https://doi.org/10.1016/j.psj.2019.12.007

Wang, X., Tang, C., Huang, B., Hao, J., & Chen, G. (2018). Review of research progress on the electrical properties and modification of mineral insulating oils used in power transformers. Energies, 11(3). https://doi.org/10.3390/en11030487

Wawerla, M., Stolle, A., Schalch, B., & Eisgruber, H. (1999). Impedance microbiology: Applications in food hygiene. Journal of Food Protection, 62(12), 1488–1496. https://doi.org/10.4315/0362-028X-62.12.1488

Xie, Y., Li, H., Ding, Y., Zhang, C., Huang, Q., Chen, C., Han, S., & Zhang, J. (2022). The effect of resins concentration and polarity on the viscosity and impedance of electrically-treated waxy oils. Journal of Petroleum Science and Engineering, 212. https://doi.org/10.1016/j.petrol.2022.110359

Yang et al. (2016). Quality evaluation of fryingoil deterioration by dielectric spectroscopy. J. Food Eng, 180, 69–76.

Yang, S., Fullerton, C., Hallett, I., Oh, H. E., Woolf, A. B., & Wong, M. (2020). Effect of Fruit Maturity on Microstructural Changes and Oil Yield during Cold-Pressed Oil Extraction of `Hass’ Avocado. JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 97(7), 779–788. https://doi.org/10.1002/aocs.12362

Yang, S., Hallett, I., Oh, H. E., Woolf, A. B., & Wong, M. (2019a). Application of electrical impedance spectroscopy and rheology to monitor changes in olive (Olea europaea L.) pulp during cold-pressed oil extraction. Journal of Food Engineering, 245, 96–103. https://doi.org/10.1016/j.jfoodeng.2018.10.013

Yang, S., Hallett, I., Oh, H. E., Woolf, A. B., & Wong, M. (2019b). The impact of fruit softening on avocado cell microstructure changes monitored by electrical impedance and conductivity for cold-pressed oil extraction. Journal of Food Process Engineering, 42(4). https://doi.org/10.1111/jfpe.13068

Yang, S., Hallett, I., Rebstock, R., Oh, H. E., Kam, R., Woolf, A. B., & Wong, M. (2018). Cellular Changes in ``Hass{’’} Avocado Mesocarp During Cold-Pressed Oil Extraction. JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 95(2), 229–238. https://doi.org/10.1002/aocs.12019

Zhang, H., Shi, H., Li, W., Ma, L., Zhao, X., Xu, Z., Wang, C., Xie, Y., & Zhang, Y. (2021). A novel impedance micro‐sensor for metal debris monitoring of hydraulic oil. Micromachines, 12(2), 1–13. https://doi.org/10.3390/mi12020150

Ziga, M., Galajda, P., Slovak, S., & Kmec, M. (2015). Determination of the quality of frying oil based on UWB impedance spectrometer. Proceedings International Radar Symposium, 2015-Augus, 955–960. https://doi.org/10.1109/IRS.2015.7226378

Zurlini, C., & Montanari, A. (2017). Use of impedance spectroscopy techniques in the study of corrosion resistance of peel-off aluminum foil lids for the packaging of pureed food. Progress in Organic Coatings, 105, 225–234. https://doi.org/10.1016/j.porgcoat.2017.01.007

Descargas

Publicado

11-09-2023

Cómo citar

[1]
J. Velásquez Castro, A. Duarte Castillo, y J. C. Caicedo Eraso, «Espectroscopía de impedancia eléctrica y dieléctrica aplicada en el control de calidad de aceites minerales. Revisión del estado del arte», EIEI ACOFI, sep. 2023.
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code
Crossref Cited-by logo