EFFECT OF THE MAGNETIC IRON CORE-CARBON SHELL NANOPARTICLES IN CHEMICAL ENHANCED OIL RECOVERY FOR ULTRA LOW INTERFACIAL TENSION REGION

Autores/as

  • Stefanía Betancur Márquez Universidad Nacional de Colombia
  • Francisco Carrasco Marín Universidad de Granada
  • Farid Bernardo Cortés Correa Universidad Nacional de Colombia
  • Camilo A. Franco Universidad Nacional de Colombia

Palabras clave:

enhanced oil recovery, nanoparticles, surfactant

Resumen

Some of advantages of the simultaneous use of surfactants and nanoparticles in EOR processes are  the  increase  in  the  efficiency  of  injection  fluid  for  sweeping,  the  reduction  of  the  adsorption  of  surfactant  onto  reservoir  rock,  the  alteration  of  wettability  and  the  reduction  of  water/crude  oil  interfacial tension. However, a large amount of nanoparticles required in chemical enhanced oil recovery (CEOR) processes might limit their application. Therefore, the main objective of this work is to synthesize, characterize and evaluate magnetic iron core-carbon shell nanoparticles that can be recovered and its impact on the reduction of surfactant adsorption on the porous media, and oil recovery  at  reservoir  conditions.  The  additional  benefit  of  the  proposed  method  is  that  these  nanoparticles can be recovered and re-used after the application due to its magnetic properties. The magnetic iron core-carbon shell nanoparticles were obtained following a new one-pot hydrothermal procedure  and  were  carbonized  at  900  °C  using  a  teflon-lined  autoclave.  The  core-shell nanoparticles  were  characterized  using  scanning  electron  microscopy  (SEM),  dynamic  light  scattering  (DLS),  N2  physisorption  at  -196  °C,  X-ray  diffraction  (XRD),  X-ray  photoelectron  spectroscopy (XPS) and magnetometry measurements. Magnetic iron core-carbon shell nanoparticles with an average particle size of 60 nm were obtained. The XPS spectrum corroborated that magnetic Fe  (0)  of  the  core  was adequately  coated  with  a  carbon  shell.  The  interfacial  tension  (IFT)  was  measured  using  a  spinning  drop  tensiometer  for  a  medium  viscosity  crude  oil  and  a  surfactant  mixture.  The  minimum  IFT  reached  was  approximately  1×10-mN  m-1  at  a  nanoparticles  concentration of 100 mg L-1. At this concentration, the dynamic adsorption tests demonstrated that the  nanoparticles  reduce  33%  the  adsorption  of  the  surfactant  mixture  in  the  porous  media.  The simultaneous  effect  of  core-shell  nanoparticles  and  the  surfactant  mixture  was  evaluated  in  a  displacement test at reservoir conditions obtaining a final oil recovery of 98%.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Stefanía Betancur Márquez, Universidad Nacional de Colombia

Petroleum engineer, M.Sc. in Engineering  Petroleum Engineering Ph.D. Candidate in Engineering  Energy Systems, Universidad Nacional de Colombia and Ph.D. Candidate in Chemistry, Universidad de Granada

Francisco Carrasco Marín, Universidad de Granada

Chemist, Ph.D. in Chemistry, Professor in Universidad de Granada

Farid Bernardo Cortés Correa, Universidad Nacional de Colombia

Chemical engineer, M.Sc. in Engineering  Chemical Engineering, Ph.D. in Engineering  Energy Systems, Professor in Universidad Nacional de Colombia

Camilo A. Franco, Universidad Nacional de Colombia

Petroleum engineer, Ph.D. in Engineering Energy Systems, Professor in Universidad Nacional de Colombia

Citas

Betancur, S., Carrasco-Marín, F., Franco, C. A., Cortés, F. B. (2018). Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, Vol. 57, No. 37, pp. 12367-12377.

https://doi.org/10.1021/acs.iecr.8b02200

Betancur, S., Carrasco-Marín, F., Pérez-Cadenas, A. F., Franco, C. A., Jiménez, J., Manrique, E. J., Cortés, F. (2019). Effect of Magnetic Iron Core-Carbon Shell Nanoparticles in Chemical Enhanced Oil Recovery (CEOR) for Ultra-Low Interfacial Tension Region. Energy & Fuels.

https://doi.org/10.1021/acs.energyfuels.9b00426

Brunauer, S., Emmett, P. H., Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, Vol. 60, No. 2, pp. 309-319.

https://doi.org/10.1021/ja01269a023

Cortés, F., Lozano, M., Santamaria, O., Betancur Marquez, S., Zapata, K., Ospina, N., Franco, C. (2018). Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. Molecules, Vol. 23, No. 7, pp. 1523.

https://doi.org/10.3390/molecules23071523

Cheraghian, G., Hendraningrat, L. (2016). A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. International Nano Letters, Vol. 6, No. 2, pp. 129-138.

https://doi.org/10.1007/s40089-015-0173-4

Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, Vol. 1, No. 5, pp. 482-501.

https://doi.org/10.1002/smll.200500006

Kazemzadeh, Y., Shojaei, S., Riazi, M., Sharifi, M. (2019). Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges [J]. Chinese Journal of Chemical Engineering, Vol. 27, No. 2, pp. 237-246.

https://doi.org/10.1016/j.cjche.2018.05.022

Mahto, A., Kumar, A., Chaudhary, J. P., Bhatt, M., Sharma, A. K., Paul, P., Meena, R. (2018). Solvent-free production of nano-FeS anchored graphene from Ulva fasciata: A scalable synthesis of super-adsorbent for lead, chromium and dyes. Journal of hazardous materials, Vol. 353, pp. 190-203.

https://doi.org/10.1016/j.jhazmat.2018.03.054

Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2016). Nanoprecipitation process: from particle preparation to in vivo applications. Polymer Nanoparticles for Nanomedicines, pp. 17-53.

https://doi.org/10.1007/978-3-319-41421-8_2

Qi, P., Ehrenfried, D. H., Koh, H., Balhoff, M. T. (2017). Reduction of residual oil saturation in sandstone cores by use of viscoelastic polymers. SPE Journal, Vol. 22, No. 02,pp.447-458.

https://doi.org/10.2118/179689-PA

Rosen, M. J., Wang, H., Shen, P., Zhu, Y. (2005). Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir, Vol. 21, No. 9, pp. 3749-3756.

https://doi.org/10.1021/la0400959

Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP, Vol. 63, No. 1, pp. 9-19.

https://doi.org/10.2516/ogst:2007060

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, Vol. 87, No. 9-10, pp. 1051-1069.

https://doi.org/10.1515/pac-2014-1117

Zargartalebi, M., Barati, N., Kharrat, R. (2014). Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors. Journal of Petroleum Science and Engineering, Vol. 119, pp. 36-43.

https://doi.org/10.1016/j.petrol.2014.04.010

Zargartalebi, M., Kharrat, R., Barati, N. (2015). Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel, Vol. 143, pp. 21-27.

https://doi.org/10.1016/j.fuel.2014.11.040

Descargas

Publicado

2019-08-31

Cómo citar

[1]
S. . Betancur Márquez, F. . Carrasco Marín, F. B. . Cortés Correa, y C. A. Franco, « EFFECT OF THE MAGNETIC IRON CORE-CARBON SHELL NANOPARTICLES IN CHEMICAL ENHANCED OIL RECOVERY FOR ULTRA LOW INTERFACIAL TENSION REGION», EIEI ACOFI, ago. 2019.