EFFECT OF THE MAGNETIC IRON CORE-CARBON SHELL NANOPARTICLES IN CHEMICAL ENHANCED OIL RECOVERY FOR ULTRA LOW INTERFACIAL TENSION REGION

Autores/as

  • Stefanía Betancur Márquez Universidad Nacional de Colombia
  • Francisco Carrasco Marín Universidad de Granada
  • Farid Bernardo Cortés Correa Universidad Nacional de Colombia
  • Camilo A. Franco Universidad Nacional de Colombia

DOI:

https://doi.org/10.26507/ponencia.10

Palabras clave:

enhanced oil recovery, nanoparticles, surfactant

Resumen

Some of advantages of the simultaneous use of surfactants and nanoparticles in EOR processes are  the  increase

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Stefanía Betancur Márquez, Universidad Nacional de Colombia

Petroleum engineer, M.Sc. in Engineering  Petroleum Engineering Ph.D. Candidate in Engineering  Energy Systems, Universidad Nacional de Colombia and Ph.D. Candidate in Chemistry, Universidad de Granada

Francisco Carrasco Marín, Universidad de Granada

Chemist, Ph.D. in Chemistry, Professor in Universidad de Granada

Farid Bernardo Cortés Correa, Universidad Nacional de Colombia

Chemical engineer, M.Sc. in Engineering  Chemical Engineering, Ph.D. in Engineering  Energy Systems, Professor in Universidad Nacional de Colombia

Camilo A. Franco, Universidad Nacional de Colombia

Petroleum engineer, Ph.D. in Engineering Energy Systems, Professor in Universidad Nacional de Colombia

Referencias bibliográficas

Betancur, S., Carrasco-Marín, F., Franco, C. A., Cortés, F. B. (2018). Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, Vol. 57, No. 37, pp. 12367-12377.

https://doi.org/10.1021/acs.iecr.8b02200

Betancur, S., Carrasco-Marín, F., Pérez-Cadenas, A. F., Franco, C. A., Jiménez, J., Manrique, E. J., Cortés, F. (2019). Effect of Magnetic Iron Core-Carbon Shell Nanoparticles in Chemical Enhanced Oil Recovery (CEOR) for Ultra-Low Interfacial Tension Region. Energy & Fuels.

https://doi.org/10.1021/acs.energyfuels.9b00426

Brunauer, S., Emmett, P. H., Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, Vol. 60, No. 2, pp. 309-319.

https://doi.org/10.1021/ja01269a023

Cortés, F., Lozano, M., Santamaria, O., Betancur Marquez, S., Zapata, K., Ospina, N., Franco, C. (2018). Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. Molecules, Vol. 23, No. 7, pp. 1523.

https://doi.org/10.3390/molecules23071523

Cheraghian, G., Hendraningrat, L. (2016). A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. International Nano Letters, Vol. 6, No. 2, pp. 129-138.

https://doi.org/10.1007/s40089-015-0173-4

Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, Vol. 1, No. 5, pp. 482-501.

https://doi.org/10.1002/smll.200500006

Kazemzadeh, Y., Shojaei, S., Riazi, M., Sharifi, M. (2019). Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges [J]. Chinese Journal of Chemical Engineering, Vol. 27, No. 2, pp. 237-246.

https://doi.org/10.1016/j.cjche.2018.05.022

Mahto, A., Kumar, A., Chaudhary, J. P., Bhatt, M., Sharma, A. K., Paul, P., Meena, R. (2018). Solvent-free production of nano-FeS anchored graphene from Ulva fasciata: A scalable synthesis of super-adsorbent for lead, chromium and dyes. Journal of hazardous materials, Vol. 353, pp. 190-203.

https://doi.org/10.1016/j.jhazmat.2018.03.054

Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2016). Nanoprecipitation process: from particle preparation to in vivo applications. Polymer Nanoparticles for Nanomedicines, pp. 17-53.

https://doi.org/10.1007/978-3-319-41421-8_2

Qi, P., Ehrenfried, D. H., Koh, H., Balhoff, M. T. (2017). Reduction of residual oil saturation in sandstone cores by use of viscoelastic polymers. SPE Journal, Vol. 22, No. 02,pp.447-458.

https://doi.org/10.2118/179689-PA

Rosen, M. J., Wang, H., Shen, P., Zhu, Y. (2005). Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir, Vol. 21, No. 9, pp. 3749-3756.

https://doi.org/10.1021/la0400959

Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP, Vol. 63, No. 1, pp. 9-19.

https://doi.org/10.2516/ogst:2007060

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, Vol. 87, No. 9-10, pp. 1051-1069.

https://doi.org/10.1515/pac-2014-1117

Zargartalebi, M., Barati, N., Kharrat, R. (2014). Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors. Journal of Petroleum Science and Engineering, Vol. 119, pp. 36-43.

https://doi.org/10.1016/j.petrol.2014.04.010

Zargartalebi, M., Kharrat, R., Barati, N. (2015). Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel, Vol. 143, pp. 21-27.

https://doi.org/10.1016/j.fuel.2014.11.040

Descargas

Publicado

2019-08-31

Cómo citar

[1]
S. . Betancur Márquez, F. . Carrasco Marín, F. B. . Cortés Correa, y C. A. Franco, « EFFECT OF THE MAGNETIC IRON CORE-CARBON SHELL NANOPARTICLES IN CHEMICAL ENHANCED OIL RECOVERY FOR ULTRA LOW INTERFACIAL TENSION REGION», EIEI ACOFI, ago. 2019.