Tendencias en investigación en educación en ingeniería: un análisis bibliométrico global

Autores/as

  • Emma Ramos Farroñan Universidad César Vallejo
  • Luis Cruz Salinas Universidad César Vallejo
  • Gary Farfán Chilicaus Universidad César Vallejo
  • Mercy Vega Becerra Universidad César Vallejo

DOI:

https://doi.org/10.26507/paper.4826

Palabras clave:

bibliometría, educación en ingeniería, análisis de redes, aprendizaje innovador, sostenibilidad, inteligencia artificial

Resumen

El presente trabajo propone un estudio bibliométrico de las tendencias de investigación en educación en ingeniería a nivel mundial para 2020-2024. Se eligieron 50 documentos con una revisión sistemática basada en PRISMA 2022 y el software VOSviewer. La exploración consistió en Scopus, Web of Science y ScienceDirect. Los resultados sugieren que los desarrollos en este campo están proponiendo una verdadera revolución, con métodos activos, como el project based learning, la gamificación, el aprendizaje-servicio y la adopción de tecnología digital aumentada, simulación y robótica educativa. En total, se identificaron cinco grandes tendencias: innovación pedagógica, equidad e igualdad, empleabilidad, enfoques STEAM y respuesta a disrupciones externas como la pandemia de COVID-19. Además, la producción científica está altamente concentrada en países como los Estados Unidos, España y el Reino Unido, aunque se observan redes emergentes en América Latina y Asia. A pesar de los avances recientes, existen brechas sustantivas en la literatura de la especialidad, específicamente en lo concerniente a las relaciones entre educación y artículos de demanda y al estudio de los factores institucionales que explican la adopción de innovaciones pedagógicas. En suma, la formación de ingenieros no puede continuar apoyándose en el paradigma técnico hegemónico y debe promover una educación más inclusiva, interdisciplinaria y enfocada en el desarrollo de competencias transversales. Los resultados de la presente investigación aportan elementos empíricos útiles para el diseño de políticas públicas, la revisión de planes y programas de estudio y el fortalecimiento de la agenda de investigación en educación en línea con los Objetivos de Desarrollo Sostenible.

Citas

Abichandani, P., L. Deepan, D. Branislav, B. Ashish, S. Jaskirat, K. Smit, B. Daniel, and M. and Kam, 2024, Competition-based active learning instruction for drone education: Interactive Learning Environments, Vol. 32, No. 5, pp. 1795-1813.

Ahmed, N., A. M. Chowdhury, T. Urmi, and L. Jamal, 2023, Impact of Socio-Economic Factors on Female Students' Enrollments in Science, Technology, Engineering and Mathematics and Workplace Challenges in Bangladesh: American Behavioral Scientist, Vol. 67, No. 9, pp. 1104-1121. https://doi.org/10.1177/00027642221078517

Allen, M., M. Lachney, and B. Green, 2023, Race-Positive Career and Technical Education: Techno-Social Agency Beyond the Vocational-Liberal Divide: TechTrends, Vol. 67, No. 3, pp. 446-455. https://doi.org/10.1007/s11528-022-00806-w

Alomari, H. W., V. Ramasamy, J. D. Kiper, and G. Potvin, 2020, A User Interface (UI) and User eXperience (UX) evaluation framework for cyberlearning environments in computer science and software engineering education: Heliyon, Vol. 6, No. 5, pp. e03917. https://doi.org/10.1016/j.heliyon.2020.e03917

Anđić, B., E. Ulbrich, T. (Noah) Dana-Picard, S. Cvjetićanin, F. Petrović, Z. Lavicza, and M. Maričić, 2023, A Phenomenography Study of STEM Teachers' Conceptions of Using Three-Dimensional Modeling and Printing (3DMP) in Teaching: Journal of Science Education and Technology, Vol. 32, No. 1, pp. 45-60. https://doi.org/10.1007/s10956-022-10005-0

Avendano-Uribe, B. E., S. Ojeda-Ramírez, and J. Perez-Baron, 2022, Resourcefulness, narratives, and identity in science, technology, engineering, arts and mathematics education: A perspective of makerspaces for rural communities in Colombia: Frontiers in Education, Vol. 7. https://doi.org/10.3389/feduc.2022.1055722

Bongers, A., C. Díaz-Roldán, and J. L. Torres, 2022, Highly Skilled International Migration, STEM Workers, and Innovation: Economics, Vol. 16, No. 1, pp. 73-89. https://doi.org/10.1515/econ- 2022-0022

Braun, J., A. O. Júnior, G. Berger, V. H. Pinto, I. N. Soares, A. I. Pereira, J. Lima, and P. Costa, 2022, A robot localization proposal for the RobotAtFactory 4.0: A novel robotics competition within the Industry 4.0 concept: Frontiers in Robotics and AI, v. 9. https://doi.org/10.3389/frobt.2022.1023590

del Cerro Velázquez, F., and G. Morales Méndez, 2021, Application in Augmented Reality for Learning Mathematical Functions: A Study for the Development of Spatial Intelligence in Secondary Education Students, 4: Mathematics, Vol. 9, No. 4, pp. 369. https://doi.org/10.3390/math9040369

Cline, C., A. M. Santuzzi, K. E. Samonds, N. LaDue, and H. E. Bergan-Roller, 2022, Assessing how students value learning communication skills in an undergraduate anatomy and physiology course: Anatomical Sciences Education, Vol. 15, No. 6, pp. 1032-1044. https://doi.org/10.1002/ase.2144

de las Cuevas, P., M. García-Arenas, and N. Rico, 2022, Why Not STEM? A Study Case on the Influence of Gender Factors on Students' Higher Education Choice, 2: Mathematics, Vol. 10, No. 2, pp. 239. https://doi.org/10.3390/math10020239

van Eck, N. J., and L. Waltman, 2020, VOSviewer manual, Leiden: Univeristeit Leiden: <https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf>.

Eltanahy, M., S. Forawi, and N. Mansour, 2020, Incorporating Entrepreneurial Practices into STEM Education: Development of Interdisciplinary E-STEM Model in High School in the United Arab Emirates: Thinking Skills and Creativity, Vol. 37, pp. 100697. https://doi.org/10.1016/j.tsc.2020.100697

Epifanio, I., and E. Calvo-Iglesias, 2024, Análisis de las competencias STEM en la formación en ingeniería: una perspectiva de género: Revista de Educación en Ingeniería, Vol. 23, No. 1, pp. 78-94.

Freeman, S., S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P. Wenderoth, 2021, Active learning increases student performance in science, engineering, and mathematics: Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, No. 23, pp. 8410-8415. https://doi.org/10.1073/pnas.1319030111

Golecki, H. M., K. Jensen, K. T. Klebbe, T. Tran, and E. A. McNeela, 2024, Integrating the arts into engineering education: Impact on students' creativity and technical competence: International Journal of STEM Education, Vol. 11, No. 2, pp. 45-59.

Götze, K., D. Kaiser, I. Aubel, V. Herdegen, and M. Bertau, 2024, Aprendizaje basado en retos en la formación en ingeniería química: Un estudio de caso de colaboración industrial: Educación para Ingenieros Químicos, Vol. 46, No. 2, pp. 112-125.

Ho, M.-T., V.-P. La, M.-H. Nguyen, T.-H. Pham, T.-T. Vuong, H.-M. Vuong, H.-H. Pham, A.-D. Hoang, and Q.-H. Vuong, 2020, An analytical view on STEM education and outcomes: Examples of the social gap and gender disparity in Vietnam: Children and Youth Services Review, Vol. 119, pp. 105650. https://doi.org/10.1016/j.childyouth.2020.105650

Hu, C.-C., H.-C. Yeh, and N.-S. Chen, 2020, Enhancing STEM competence by making electronic musical pencil for non-engineering students: Computers & Education, Vol. 150, pp. 103840. https://doi.org/10.1016/j.compedu.2020.103840

Hughes, B. S., M. W. Corrigan, D. Grove, S. B. Andersen, and J. T. Wong, 2022, Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States: International Journal of STEM Education, Vol. 9, No. 1, pp. 58. https://doi.org/10.1186/s40594-022-00375-7

Jdeed, M., M. Schranz, and W. Elmenreich, 2020, A study using the low-cost swarm robotics platform spiderino in education: Computers and Education Open, Vol. 1, pp. 100017. https://doi.org/10.1016/j.caeo.2020.100017

John, D., and G. S. Devi, 2021, Designing STEM-Specific Student-Friendly Reading Content for the Engineering English Classroom: IEEE Transactions on Professional Communication, Vol. 64, No. 4, pp. 444-455 https://doi.org/10.1109/TPC.2021.3110419

Junaid, K. A. M., D. Sudha, and Sabari. L. Umamaheswari, 2020, Analysis of Peril and Mitigation in Engineering Education for Viable Augmentation: Procedia Computer Science, Vol. 172, pp. 523-527. https://doi.org/10.1016/j.procs.2020.05.063

King, N. S., and B. Upadhyay, 2022, Negotiating mentoring relationships and support for Black and Brown early-career faculty: Science Education, Vol. 106, No. 5, pp. 1149-1171. https://doi.org/10.1002/sce.21755

Kwauk, C. T., and O. M. Casey, 2022, A green skills framework for climate action, gender empowerment, and climate justice: Development Policy Review, Vol. 40, No. S2, pp. e12624. https://doi.org/10.1111/dpr.12624

Lecorchick, D., J. Papadopoulos, and L. Tabor, 2020, Engineering Education through an International Collaboration: A Framework: Procedia Computer Science, Vol. 172, pp. 838-842. https://doi.org/10.1016/j.procs.2020.05.120

Lee, C. A. L., 2023, Channelling Artscience Through Fan-Fiction for Diversifying STEM Approaches in Participatory Learning in Malaysia: American Behavioral Scientist, Vol. 67, No. 9, pp. 1122-1138. https://doi.org/10.1177/00027642221078511

López-Belmonte, J., 2022, Comparative analysis between a STEM-based learning process and traditional teaching: South African Journal of Education, Vol. 42, No. S1, pp. 2057. https://doi.org/10.15700/saje.v42ns1a2057

Loukatos, D., N. Androulidakis, K. G. Arvanitis, K. P. Peppas, and E. Chondrogiannis, 2022, Using Open Tools to Transform Retired Equipment into Powerful Engineering Education Instruments: A Smart Agri-IoT Control Example, 6: Electronics, Vol. 11, No. 6, pp. 855. https://doi.org/10.3390/electronics11060855

Loumpourdi, M., 2024, The future of employee development in the emerging fourth industrial revolution: a preferred liberal future: Journal of Vocational Education & Training, Vol. 76, No. 1, pp. 25-44. https://doi.org/10.1080/13636820.2021.1998793

Ma, Y., 2021, Reconceptualizing STEM Education in China as Praxis: A Curriculum Turn, 9: Sustainability, Vol. 13, No. 9, pp. 4961. https://doi.org/10.3390/su13094961

Page, M. J. et al., 2021, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews: BMJ, Vol. 372, pp. n71. https://doi.org/10.1136/bmj.n71

Pavai, M., and M. Uma, 2020, Changing Paradigms of Engineering Education - An Indian Perspective: Procedia Computer Science, Vol. 172, pp. 215-224. https://doi.org/10.1016/j.procs.2020.05.034

Pradhananga, P., M. ElZomor, and G. Santi Kasabdji, 2022, Advancing Minority STEM Students' Communication and Presentation Skills through Cocurricular Training Activities: Journal of Civil Engineering Education, Vol. 148, No. 2, pp. 04022001. https://doi.org/10.1061/(ASCE)EI.2643-9115.0000060

Priulla, A., N. D'Angelo, and M. Attanasio, 2021, An analysis of Italian university students' performance through segmented regression models: gender differences in STEM courses: Genus, Vol. 77, No. 1, pp. 11. https://doi.org/10.1186/s41118-021-00118-6

Ramsey, G. P., 2022, Integrating science, technology, engineering, and math (STEM) and music: Putting the arts in science, technology, engineering, arts, and math (STEAM) through acousticsa): The Journal of the Acoustical Society of America, Vol. 152, No. 2, pp. 1106-1111. https://doi.org/10.1121/10.0013571

Semke, E., W. Theobald, and P. Genova, 2022, Stereotype Threat and Faultlines Based on Cultural Diversity in Engineering Education in Germany: International Journal of Engineering Education, Vol. 38, No. 3, pp. 719-726.

Shamim, M., M. Mamun, and M. A. Raihan, 2022, Mapping the Research of Technical Teachers' Pedagogical Beliefs about Science Technology Engineering and Mathematics (STEM) Education, 4: International Journal of Instruction, Vol. 15, No. 4, pp. 797-818. https://doi.org/10.29333/iji.2022.15443a

Shen, J., T. Li, and M. Wu, 2020, The New Engineering Education in China: Procedia Computer Science, Vol. 172, pp. 886-895. https://doi.org/10.1016/j.procs.2020.05.128

Shibata, M., K. Demura, S. Hirai, and A. Matsumoto, 2021, Comparative Study of Robotics Curricula: IEEE Transactions on Education, Vol. 64, No. 3, pp. 283-291. https://doi.org/10.1109/TE.2020.3041667

Skliarova, I., I. Meireles, N. Martins, T. Tchemisova, and I. Cação, 2022, Enriching Traditional Higher STEM Education with Online Teaching and Learning Practices: Students' Perspective, 11: Education Sciences, Vol. 12, No. 11, pp. 806. https://doi.org/10.3390/educsci12110806

Speck, O., and T. Speck, 2021, Biomimetics and Education in Europe: Challenges, Opportunities, and Variety, 3: Biomimetics, Vol. 6, No. 3, pp. 49. https://doi.org/10.3390/biomimetics6030049

Tam, H., A. Y. Chan, and O. L. Lai, 2020, Gender stereotyping and STEM education: Girls' empowerment through effective ICT training in Hong Kong: Children and Youth Services Review, Vol. 119, pp. 105624. https://doi.org/10.1016/j.childyouth.2020.105624

Theobald, R., J. Plasman, M. Gottfried, T. Gratz, K. Holden, and D. Goldhaber, 2022, Sometimes Less, Sometimes More: Trends in Career and Technical Education Participation for Students With Disabilities: Educational Researcher, Vol. 51, No. 1, p. 40-50. https://doi.org/10.3102/0013189X211006361

Tommasi, F., M. Perini, and R. Sartori, 2021, Multilevel comprehension for labor market inclusion: a qualitative study on experts' perspectives on Industry 4.0 competences: Education + Training, Vol. 64, No. 2, pp. 177-189. https://doi.org/10.1108/ET-04-2021-0146

Virtič, M. P., and A. Šorgo, 2022, Lower secondary school experiences as predictors of career aspirations toward engineering, and production and processing occupations: European Journal of Engineering Education, Vol. 47, No. 5, pp. 833-850. https://doi.org/10.1080/03043797.2022.2033169

Werum, R., C. Steidl, S. Harcey, and J. Absalon, 2020, Military service and STEM employment: Do veterans have an advantage? Social Science Research, Vol. 92, pp. 102478. https://doi.org/10.1016/j.ssresearch.2020.102478

Zaytseva, S. A., V. V. Ivanov, B. S. Kiselev, and A. F. Zubakov, 2022, Development of educational robotics: problems and prospects, 2: Educación y Ciencia, Vol. 24, No. 2, p. 84-115. https://doi.org/10.17853/1994-5639-2022-2-84-115

Cómo citar

[1]
E. Ramos Farroñan, L. Cruz Salinas, G. Farfán Chilicaus, y M. Vega Becerra, «Tendencias en investigación en educación en ingeniería: un análisis bibliométrico global», EIEI ACOFI, sep. 2025.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

08-09-2025
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code
Crossref Cited-by logo