Prediction of prosthetic components in hip arthroplasty using a multimodal architecture
DOI:
https://doi.org/10.26507/paper.4602Palabras clave:
Hip arthroplasty, prosthetic components, deep learning, preoperative planning, U-NetResumen
Total hip arthroplasty (THA) is a surgical procedure that replaces the damaged parts of the hip joint with a prosthetic implant. The main clinical indications for this surgery include certain conditions that affect the hip joint, such as inflammatory arthritis, osteonecrosis, and osteoarthritis
The success of this surgery depends on preoperative planning which is carried out by orthopedists. They must select the prosthesis that best fits the patient, according to some factors such as the material, the type of the prosthesis, and the dimensions of its components: femoral stem length, offset, neck length, stem-neck angle, and acetabular cup diameter. In current clinical practice, surgeons often estimate the dimensions of the prosthetic components using manual template techniques. This involves using anteroposterior hip radiographs and templates that include the dimensions of the prosthetic components. These templates are overlaid on the radiographs to estimate the appropriate dimensions for the patient. However, this process has limitations often related to the surgeon’s experience, the quality of the radiographs, and the template magnification.
To overcome those challenges, this study proposes an algorithm based on multimodal neural networks to predict the prosthetic components for hip arthroplasty. This algorithm uses clinical data and diagnostic images such as anteroposterior hip radiographs. The algorithm implementation consists of two stages. First, a U-Net architecture whose aim is to segment the hip radiographs to separate the anatomical regions of interest: the pelvis and proximal femur. Then, a multimodal neural network architecture to predict the prosthetic components using clinical images and commercial data.
Citas
American Association of Hip and Knee Surgeons (AAHKS). (2023). American Joint Replacement Registry: 2023 Annual Report. Consulted March 20, 2025, at https://www.aahks.org/american-joint-replacement-registry-releases-2023-annual-report/
Arza, M. B., Kikuchi, A., Duarte, A., González, J., & Cappello, J. M. (2020). Templating in total hip arthroplasty. Anales de la Facultad de Ciencias Médicas (Asunción), 53(2), 37–46. https://doi.org/10.18004/anales/2020.053.02.37
Bucholz, R. W. (2014). Indicaciones, técnicas y resultados de reemplazo total de cadera en Estados Unidos. Revista Médica Clínica Las Condes, 25(5), 760–764. https://doi.org/10.1016/s0716-8640(14)70104-x
Chen, J. B., Diane, A., Lyman, S., Chiu, Y.-F., Blevins, J. L., & Westrich, G. H. (2022). Predicting Implant Size in Total Hip Arthroplasty. Arthroplasty Today. https://doi.org/10.1016/j.artd.2022.02.018
Hernández, M. C. M., et al. (2023). Association of prediabetes and diabetes with hip and knee osteoarthritis in the United States: A cross-sectional analysis of NHANES 2009–2016. Arthritis Care & Research, 75(2), 367–375. https://pubmed.ncbi.nlm.nih.gov/37757464/
Kim, M., Oh, I.-S., & Yoon, S.-J. (2022). Deep Learning and Computer Vision Techniques for Automated Total Hip Arthroplasty Planning on 2-D Radiographs. IEEE Access, p. 1. https://doi.org/10.1109/access.2022.3204147
Martínez, M. A. (2022). Reemplazo total de cadera en Colombia: Epidemiología y resultados a largo plazo. Revista Colombiana de Cirugía Ortopédica y Traumatología, 35(1), 56–62.
National University of Colombia News Agency. (2025, January 27). Hip replacement, a high-care surgery in Colombia. UNAL News Agency. Consulted March 20, 2025, at https://agenciadenoticias.unal.edu.co/detalle/reemplazo-de-cadera-cirugia-de-alto-cuidado-en-colombia
OECD. (2021). Health at a Glance 2021: OECD Indicators. Consulted March 20, 2025, at https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2021_8b492d7a-en
Pabinger, C., Lothaller, H., Portner, N., & Geissler, A. (2018). Projections of hip arthroplasty in OECD countries up to 2050. HIP International, 28(5), 498–506.
Pagès, E., Iborra, J., & Cuxart, A. (2007). Artroplastia de cadera. Rehabilitación, 41(6), 280–289. https://doi.org/10.1016/s0048-7120(07)75531-7
Pourmoghaddam, A., Dettmer, M., Freedhand, A. M., Domingues, B. C., & Kreuzer, S. W. (2015). A patient-specific predictive model increases preoperative templating accuracy in hip arthroplasty. Journal of Arthroplasty, 30(4), 622–626. https://doi.org/10.1016/j.arth.2014.11.021
Roboflow. (2024). Pelvis X-ray Dataset. Roboflow Universe. Consulted March 20, 2025, at https://universe.roboflow.com/yolov8-jl4qm/pelvis_xray/dataset/5
Zhang, W., Xiao, H., Xu, W., Lu, Y., Guo, X., Zhou, Y., & Chen, X. (2022). Development and validation of an artificial intelligence preoperative planning system for total hip arthroplasty. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.841202
Cómo citar
Descargas
Descargas
Publicado
Evento
Sección
Licencia
Derechos de autor 2025 Asociación Colombiana de Facultades de Ingeniería - ACOFI

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
| Estadísticas de artículo | |
|---|---|
| Vistas de resúmenes | |
| Vistas de PDF | |
| Descargas de PDF | |
| Vistas de HTML | |
| Otras vistas | |



