Determinación no destructiva de la calidad en fresas empacadas en PET mediante imágenes RGB e IR

Autores/as

  • Carlos Alberto Bejarano Martínez Pontificia Universidad Javeriana
  • Martha Patricia Caro Pontificia Universidad Javeriana
  • Carlos Alberto Parra Pontificia Universidad Javeriana

DOI:

https://doi.org/10.26507/paper.4589

Palabras clave:

Poscosecha, Procesamiento de imagenes, Artificial Intelligence (AI), Epidermis

Resumen

Se desarrolló un método para identificar, segmentar y analizar la variación de color, la presencia de moho (Botrytis cinerea) y la temperatura de la epidermis en fresas empacadas en PET, sin comprometer su integridad. El procesamiento de imágenes se llevó a cabo mediante un modelo YOLO V8 de visión por computadora, entrenado con un conjunto de 1,100 imágenes RGB. En estas imágenes, se etiquetaron características fisiológicas asociadas con la satisfacción del consumidor. Las evaluaciones realizadas mediante métricas de clasificación demostraron la efectividad del método propuesto, con un accuracy mínimo del 80%, una precision del 100% en todos los casos, un recall mínimo del 91.84% y valores de F1-score superiores al 95%. Este enfoque aporta al conocimiento científico, dado que solo se ha identificado un estudio previo que emplea YOLO V8 en el análisis de fresas. En comparación con otros modelos usados en literatura en la poscosecha de fresa tales como CNN, Mask R-CNN, discriminación lineal y no lineal, y AlexNet, el método propuesto cuenta con un desempeño igual o superior.

Citas

Bhujel, A., Khan, F., Basak, J. K., Jaihuni, M., Sihalath, T., Moon, B. E., Park, J., & Kim, H. T. (2022). Detection of gray mold disease and its severity on strawberry using deep learning networks. Journal of Plant Diseases and Protection, 129(3), 579–592. https://doi.org/10.1007/s41348-022-00578-8

Chan, F. T. S., Wang, Z. X., Goswami, A., Singhania, A., & Tiwari, M. K. (2020). Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. International Journal of Production Research, 58(17), 5155–5174. https://doi.org/10.1080/00207543.2019.1701209

Choi, J. Y., Seo, K., Cho, J. S., & Moon, K. D. (2021). Applying convolutional neural networks to assess the external quality of strawberries. Journal of Food Composition and Analysis, 102(July), 104071. https://doi.org/10.1016/j.jfca.2021.104071

Cybulska, J., Drobek, M., Panek, J., Cruz-Rubio, J. M., Kurzyna-Szklarek, M., Zdunek, A., & Frąc, M. (2022). Changes of pectin structure and microbial community composition in strawberry fruit (Fragaria × ananassa Duch.) during cold storage. Food Chemistry, 381(July 2021). https://doi.org/10.1016/j.foodchem.2022.132151

Defraeye, T., Shrivastava, C., Berry, T., Verboven, P., Onwude, D., Schudel, S., Bühlmann, A., Cronje, P., & Rossi, R. M. (2021). Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends in Food Science and Technology, 109, 245–258. https://doi.org/10.1016/j.tifs.2021.01.025

DNP. (2016). Pérdida y desperdicio de alimentos en Colombia.

DNP. (2022). Encuesta Nacional Logística.

Gao, C., Zhang, Q., Tan, Z., Zhao, G., Gao, S., Kim, E., & Shen, T. (2024). Applying optimized YOLOv8 for heritage conservation: enhanced object detection in Jiangnan traditional private gardens. Heritage Science, 12(1), 31. https://doi.org/10.1186/s40494-024-01144-1

ICONTEC. (1997). Norma Técnica Colombiana NTC 4103:1997 - Frutas frescas. Fresas variedad chandler. Especificaciones.

Jedermann, R., Emond, J.-P., & Lamg, W. (2007). Shelf life prediction by intelligent RFID. In Dynamics in Logistics (pp. 231–238).

Kazancoglu, Y., Ekinci, E., Mangla, S. K., Sezer, M. D., & Kayikci, Y. (2021). Performance evaluation of reverse logistics in food supply chains in a circular economy using system dynamics. Business Strategy and the Environment, 30(1), 71–91. https://doi.org/10.1002/bse.2610

Keizer, M. De, Akkerman, R., Grunow, M., Bloemhof, J. M., Haijema, R., & Vorst, J. G. A. (2017). Logistics network design for perishable products with heterogeneous quality decay. European Journal of Operational Research, 262, 535–549.

Ktenioudaki, A., Esquerre, C. A., Do Nascimento Nunes, C. M., & O’Donnell, C. P. (2022). A decision support tool for shelf-life determination of strawberries using hyperspectral imaging technology. Biosystems Engineering, 221, 105–117. https://doi.org/10.1016/j.biosystemseng.2022.06.013

Li, Y., Chu, F., & Chen, K. (2017). Coordinated Production Inventory Routing Planning for Perishable Food. IFAC-PapersOnLine, 50(1), 4246–4251. https://doi.org/10.1016/j.ifacol.2017.08.829

Liu, M., Chu, Z., Cui, M., Yang, Q., Wang, J., & Yang, H. (2023). Red Ripe Strawberry Recognition and Stem Detection Based on Improved YOLO v8-Pose. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 54, 244–251. https://doi.org/10.6041/j.issn.1000-1298.2023.S2.029

Mejjaouli, S., & Babiceanu, R. F. (2018). Cold supply chain logistics: System optimization for real-time rerouting transportation solutions. Computers in Industry, 95, 68–80. https://doi.org/10.1016/j.compind.2017.12.006

Ni, J., Gao, J., Li, J., Yang, H., Hao, Z., & Han, Z. (2021). E-AlexNet: quality evaluation of strawberry based on machine learning. Journal of Food Measurement and Characterization, 15(5), 4530–4541. https://doi.org/10.1007/s11694-021-01010-9

Nunes, G., Teixeira, F., Schwarz, K., Camargo, C. K., De Resende, J. T. V., Dos Santos, E. F., Franco, B. C., & Novello, D. (2021). Influence of genetic variability on the quality of strawberry cultivars: Sensorial, physical-chemical and nutritional characterization. Acta Scientiarum - Agronomy, 43(November), 1–10. https://doi.org/10.4025/actasciagron.v43i1.46862

Prieto, M., María Mouwen, J., & Cerdeño Sánchez, A. (2008). Concepto de calidad en la industria alimentaria. Interciencia, 33(4).

Región Central RAP-E. (2020). Plan de Abastecimiento Alimentario.

Sader, S., Husti, I., & Daroczi, M. (2021). A review of quality 4.0: definitions, features, technologies, applications, and challenges. Total Quality Management and Business Excellence, 1–19. https://doi.org/10.1080/14783363.2021.1944082

Wang, H., Wang, Q., Zhai, J., Yuan, D., Zhang, W., Xie, X., Zhou, B., Cai, J., & Lei, Y. (2022). Design of Fast Acquisition System and Analysis of Geometric Feature for Highway Tunnel Lining Cracks Based on Machine Vision. Applied Sciences (Switzerland), 12(5). https://doi.org/10.3390/app12052516

Wang, H., Weng, Z., & Li, Y. (2018). Design of high-speed image acquisition system based on FPGA. Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, 2682–2686. https://doi.org/10.1109/CCDC.2018.8407580

Widodo, K. H., Perdana, Y. R., Thompson, R. G., Purwoto, H., Kurniawan, D. A., & Soemardjito, J. (2020). Current research on city logistics and possible adoption in developing countries. AIP Conference Proceedings, 2217. https://doi.org/10.1063/5.0000774

Yue, X.-Q., Shang, Z.-Y., Yang, J.-Y., Huang, L., & Wang, Y.-Q. (2020). A smart data-driven rapid method to recognize the strawberry maturity. Information Processing in Agriculture, 1(7). https://doi.org/10.1016/j.inpa.2019.10.005

Zhang, G., Li, G., & Peng, J. (2020). Risk assessment and monitoring of green logistics for fresh produce based on a support vector machine. Sustainability (Switzerland), 12(18), 1–20. https://doi.org/10.3390/su12187569

Zhou, X., Ampatzidis, Y., Lee, W. S., Zhou, C., Agehara, S., & Schueller, J. K. (2022). Deep learning-based postharvest strawberry bruise detection under UV and incandescent light. Computers and Electronics in Agriculture, 202. https://doi.org/10.1016/j.compag.2022.107389

Cómo citar

[1]
C. A. Bejarano Martínez, M. P. Caro, y C. A. Parra, «Determinación no destructiva de la calidad en fresas empacadas en PET mediante imágenes RGB e IR», EIEI ACOFI, sep. 2025.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

08-09-2025

Evento

Sección

Estudiantes de doctorado en ingeniería
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code
Crossref Cited-by logo