Estudio y evaluación de convertidores DC-DC en sistemas híbridos con múltiples fuentes de energía renovable

Autores/as

  • Mónica Martín Ortiz Universidad Pedagógica y Tecnológica de Colombia
  • Wilson Javier Pérez Holguín Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.26507/paper.4511

Palabras clave:

Convertidores DC-DC, Control Inteligente, Sistemas Híbridos de energía, FPGA, Energías Renovables

Resumen

En este trabajo se revisan las diferentes topologías y las técnicas de control inteligente más usadas en la actualidad para convertidores DC-DC empleados en sistemas híbridos de generación eléctrica. Adicionalmente, se investiga acerca del uso de controladores embebidos en hardware reconfigurable tales como las FPGA (Field-Programmable Gate Array) para mejorar el rendimiento de los convertidores DC-DC, aprovechando las ventajas de este tipo de plataformas que incluyen la ejecución paralela de operaciones, bajo consumo de energía, alta portabilidad, baja latencia y operación en altas frecuencias. Estas características permiten la implementación de técnicas de control avanzadas tales como las basadas en redes neuronales, inteligencia artificial, algoritmos adaptativos y Machine Learning, que consiguen optimizar la operación de los convertidores de potencia en sistemas híbridos de generación de energía eléctrica.

Biografía del autor/a

Wilson Javier Pérez Holguín, Universidad Pedagógica y Tecnológica de Colombia

Profesor titular de la Universidad Pedagógica y Tecnológica de Colombia, Director del Grupo de Investigación en Robótica y Automatización Industrial – GIRA

Citas

Allani, M. Y., Riahi, J., & Vergura, S. (2021). FPGA-Based Controller for a Hybrid Grid-Connected.

Begum, S. G., & Nawaz, S. S. (2021). A study of Comparative analysis of fuzzy logic controller and neural network for dc-dc Buck converter. E3S Web of Conferences, 309, 3–7. https://doi.org/10.1051/e3sconf/202130901021

Caldo, R. B., & Yap, R. Y. (2013). Design, development and implementation of a fuzzy logic controller for DC-DC Buck and Boost converter in an FPGA. 2013 International Conference on Control, Automation and Information Sciences, ICCAIS 2013, 73–78. https://doi.org/10.1109/ICCAIS.2013.6720533

Chen, J., Chen, Y., Tong, L., Peng, L., & Kang, Y. (2020). A Backpropagation Neural Network-Based Explicit Model Predictive Control for DC-DC Converters with High Switching Frequency. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 2124–2142. https://doi.org/10.1109/JESTPE.2020.2968475

Dong, W., Member, S., Li, S., & Fu, X. (2021). Control of a Buck dc/dc Converter using Approximate Dynamic Programming and Artificial Neural Networks. Ieee.

Gangula, S. Das, Nizami, T. K., Udumula, R. R., Chakravarty, A., & Singh, P. (2023). Adaptive neural network control of DC–DC power converter. Expert Systems with Applications, 229(PA), 120362. https://doi.org/10.1016/j.eswa.2023.120362

Gong, X., & Fei, J. (2023). Adaptive Neural Backstepping Terminal Sliding Mode Control.

Jensie Anita, S., Shakil Ahmed, Y., Haris Prabhu, D., & Govind, S. L. (2020). Proposed modified solar based dc-dc quadratic boost converter for modern irrigation system. Materials Today: Proceedings, 33, 4656–4662. https://doi.org/10.1016/j.matpr.2020.08.306

Khleaf, H. K., Nahar, A. K., & Jabbar, A. S. (2019). Intelligent control of DC-DC converter based on PID-neural network. International Journal of Power Electronics and Drive Systems, 10(4), 2254–2262. https://doi.org/10.11591/ijpeds.v10.i4.pp2254-2262

Kwon, S., Yoon, C., & Lee, Y. Il. (2022). Practical Implementation Method of Reinforcement Learning for Power Converter. IFAC-PapersOnLine, 55(9), 437–441. https://doi.org/10.1016/j.ifacol.2022.07.076

Liu, Z.-W., & Yu, W.-B. (2024). Design and Implementation of DC-DC Buck Converter based on Deep Neural Network Sliding Mode Control. https://arxiv.org/abs/2405.15493v1

Mamarelis, E., Ramos-Paja, C. A., Petrone, G., Spagnuolo, G., Vitelli, M., & Giral, R. (2010). FPGA-based controller for mitigation of the 100 Hz oscillation in grid connected PV systems. Proceedings of the IEEE International Conference on Industrial Technology, 925–930. https://doi.org/10.1109/ICIT.2010.5472556

Maruta, H., Motomurat, M., & Kurokawa, F. (2014). Characteristics Study of Neural Network Aided Digital Control for DC-DC Converter D . 3611–3615.

Mazaheri, N., Santamargarita, D., Bueno, E., & Pizarro, D. (2024). A Deep Reinforcement Learning Approach to DC-DC Power Electronic Converter Control with Practical Considerations.

Namboothiripad, M. K. (2024). Optimizing State Space Integral Controllers for DC-DC Buck Converters Using FPGA-Based Genetic Algorithms. International Journal of Computing and Digital Systems.

Narvarte, L., Fernández-Ramos, J., Martínez-Moreno, F., Carrasco, L. M., Almeida, R. H., & Carrêlo, I. B. (2018). Solutions for adapting photovoltaics to large power irrigation systems for agriculture. Sustainable Energy Technologies and Assessments, 29(April), 119–130. https://doi.org/10.1016/j.seta.2018.07.004

Nizami, T. K., & Mahanta, C. (2014). Adaptive Backstepping Control for DC-DC Buck. 0–4.

Pandit, S., & Shet, V. N. (2017). Review of FPGA based control for switch mode converters. Proceedings of the 2017 2nd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2017, 1(d), 1–5. https://doi.org/10.1109/ICECCT.2017.8117996

Priya Thakur, Tripathi, Nagendra, .Heena Mishra. (2023). Modeling and Control of a Buck DC-DC Converter Based on Artificial Neural Network. 21(3), 1–10.

Rojas-Duenas, G., Riba, J. R., Kahalerras, K., Moreno-Eguilaz, M., Kadechkar, A., & Gomez-Pau, A. (2020). Black-box modelling of a DC-DC Buck converter based on a recurrent neural network. Proceedings of the IEEE International Conference on Industrial Technology, 2020-Febru, 456–461. https://doi.org/10.1109/ICIT45562.2020.9067098

Saadatmand, S., Shamsi, P., & Ferdowsi, M. (2020). The voltage regulation of a Buck converter using a neural network predictive controller. 2020 IEEE Texas Power and Energy Conference, TPEC 2020. https://doi.org/10.1109/TPEC48276.2020.9042588

Salih, M. M., Al-araji, A. S., & Jeiad, H. A. (2020). Design of DC-DC Buck Converter for Smartphone Applications Based on FPGA Digital Voltage Controller. Iraqi Journal of Computer, Communication, Control and System Engineering, July, 29–47. https://doi.org/10.33103/uot.ijccce.20.4.4

Singh, V. K., & Tripathi, R. N. (2023). An FPGA Hardware-in-the-Loop Approach for Comprehensive Analysis and Development of Grid-Connected VSI System. Energies, 16(2). https://doi.org/10.3390/en16020759

Sorouri, H., Sedighizadeh, M., Oshnoei, A., & Khezri, R. (2022). An intelligent adaptive control of DC–DC power Buck converters. International Journal of Electrical Power and Energy Systems, 141(February), 108099. https://doi.org/10.1016/j.ijepes.2022.108099

Talaat, M., Adel, M. H. E., & Taghreed, A. (2023). Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. In Artificial Intelligence Review (Vol. 56, Issue 9). Springer Netherlands. https://doi.org/10.1007/s10462-023-10410-w

Talaat, M., Alblawi, A., Tayseer, M., & Elkholy, M. H. (2022). FPGA control system technology for integrating the PV / wave / FC hybrid system using ANN optimized by MFO techniques Analog to Digital Converter. Sustainable Cities and Society, 80(October 2021), 103825. https://doi.org/10.1016/j.scs.2022.103825

Talaat, M., Farahat, M. A., & Elkholy, M. H. (2019). Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies. Energy, 170, 668–682. https://doi.org/10.1016/j.energy.2018.12.171

Tobón, A., Ramos-Paja, C. A., Orozco-Gutíerrez, M. L., Saavedra-Montes, A. J., & Serna-Garcés, S. I. (2024). Adaptive Sliding-Mode Controller for a Zeta Converter to Provide High-Frequency Transients in Battery Applications. Algorithms, 17(7), 1–25. https://doi.org/10.3390/a17070319

Vel, J. D., Cadavid, L., & Franco, C. J. (2023). Intelligence Techniques in Sustainable Energy : Analysis of a Decade of Advances.

Wang, D., Shen, Z. J., Yin, X., Tang, S., Liu, X., Zhang, C., Wang, J., Rodriguez, J., & Norambuena, M. (2021). Model Predictive Control Using Artificial Neural Network for Power Converters. IEEE Transactions on Industrial Electronics, 69(4), 3689–3699. https://doi.org/10.1109/TIE.2021.3076721

Xu, C., Liao, Z., Li, C., Zhou, X., & Xie, R. (2022). Review on Interpretable Machine Learning in Smart Grid. Energies, 15(12), 1–31. https://doi.org/10.3390/en15124427

Zhao, S., Blaabjerg, F., & Wang, H. (2021). An overview of artificial intelligence applications for power electronics. IEEE Transactions on Power Electronics, 36(4), 4633–4658. https://doi.org/10.1109/TPEL.2020.3024914

Cómo citar

[1]
M. Martín Ortiz y W. J. Pérez Holguín, «Estudio y evaluación de convertidores DC-DC en sistemas híbridos con múltiples fuentes de energía renovable», EIEI ACOFI, sep. 2025.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

08-09-2025

Evento

Sección

Estudiantes de doctorado en ingeniería
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code
Crossref Cited-by logo